Huang Di, Li Zhennan, Wang Kuo, Zhou Haixin, Zhao Xiaojie, Peng Xinyu, Zhang Rui, Wu Jipeng, Liang Jiaojiao, Zhao Ling
College of Railway Transportation, Hunan University of Technology, Zhuzhou 412008, China.
College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008, China.
Polymers (Basel). 2023 Jul 5;15(13):2954. doi: 10.3390/polym15132954.
The power conversion efficiency (PCE) of ternary polymer solar cells (PSCs) with non-fullerene has a phenomenal increase in recent years. However, improving the open circuit voltage (V) of ternary PSCs with non-fullerene still remains a challenge. Therefore, in this work, machine learning (ML) algorithms are employed, including eXtreme gradient boosting, K-nearest neighbor and random forest, to quantitatively analyze the impact mechanism of V in ternary PSCs with the double acceptors from the two aspects of photovoltaic materials. In one aspect of photovoltaic materials, the doping concentration has the greatest impact on V in ternary PSCs. Furthermore, the addition of the third component affects the energy offset between the donor and acceptor for increasing V in ternary PSCs. More importantly, to obtain the maximum V in ternary PSCs with the double acceptors, the HOMO and LUMO energy levels of the third component should be around (-5.7 ± 0.1) eV and (-3.6 ± 0.1) eV, respectively. In the other aspect of molecular descriptors and molecular fingerprints in the third component of ternary PSCs with the double acceptors, the hydrogen bond strength and aromatic ring structure of the third component have high impact on the V of ternary PSCs. In partial dependence plot, it is clear that when the number of methyl groups is four and the number of carbonyl groups is two in the third component of acceptor, the V of ternary PSCs with the double acceptors can be maximized. All of these findings provide valuable insights into the development of materials with high V in ternary PSCs for saving time and cost.
近年来,具有非富勒烯结构的三元聚合物太阳能电池(PSC)的功率转换效率(PCE)有了显著提高。然而,提高具有非富勒烯结构的三元PSC的开路电压(V)仍然是一个挑战。因此,在这项工作中,采用了机器学习(ML)算法,包括极端梯度提升、K近邻和随机森林,从光伏材料的两个方面定量分析V在具有双受体的三元PSC中的影响机制。在光伏材料的一个方面,掺杂浓度对三元PSC中的V影响最大。此外,添加第三组分影响供体和受体之间的能量偏移,以提高三元PSC中的V。更重要的是,为了在具有双受体的三元PSC中获得最大的V,第三组分的最高已占分子轨道(HOMO)和最低未占分子轨道(LUMO)能级应分别约为(-5.7±0.1)eV和(-3.6±0.1)eV。在具有双受体的三元PSC第三组分的分子描述符和分子指纹的另一个方面,第三组分的氢键强度和芳环结构对三元PSC的V有很大影响。在偏依赖图中,可以清楚地看到,当受体第三组分中的甲基数为4且羰基数为2时,具有双受体的三元PSC的V可以最大化。所有这些发现为开发具有高V的三元PSC材料提供了有价值的见解,以节省时间和成本。