Suppr超能文献

用于线性估计回归的更精确计算工具。

A Sharper Computational Tool for LE Regression.

作者信息

Liu Xiaoqian, Chi Eric C, Lange Kenneth

机构信息

Department of Statistics, North Carolina State University.

Department of Statistics, Rice University.

出版信息

Technometrics. 2023;65(1):117-126. doi: 10.1080/00401706.2022.2118172. Epub 2022 Oct 7.

Abstract

Building on previous research of Chi and Chi (2022), the current paper revisits estimation in robust structured regression under the LE criterion. We adopt the majorization-minimization (MM) principle to design a new algorithm for updating the vector of regression coefficients. Our sharp majorization achieves faster convergence than the previous alternating proximal gradient descent algorithm (Chi and Chi, 2022). In addition, we reparameterize the model by substituting precision for scale and estimate precision via a modified Newton's method. This simplifies and accelerates overall estimation. We also introduce distance-to-set penalties to enable constrained estimation under nonconvex constraint sets. This tactic also improves performance in coefficient estimation and structure recovery. Finally, we demonstrate the merits of our improved tactics through a rich set of simulation examples and a real data application.

摘要

基于Chi和Chi(2022)之前的研究,本文重新审视了在LE准则下稳健结构化回归中的估计问题。我们采用主元最小化(MM)原理来设计一种更新回归系数向量的新算法。我们的精确主元化比之前的交替近端梯度下降算法(Chi和Chi,2022)收敛得更快。此外,我们通过用精度代替尺度对模型进行重新参数化,并通过改进的牛顿法估计精度。这简化并加速了整体估计。我们还引入了到集惩罚项,以实现非凸约束集下的约束估计。这种策略也提高了系数估计和结构恢复的性能。最后,我们通过一系列丰富的模拟示例和实际数据应用展示了我们改进策略的优点。

相似文献

1
A Sharper Computational Tool for LE Regression.用于线性估计回归的更精确计算工具。
Technometrics. 2023;65(1):117-126. doi: 10.1080/00401706.2022.2118172. Epub 2022 Oct 7.
4
Distance majorization and its applications.距离优化及其应用。
Math Program. 2014 Aug 1;146:409-436. doi: 10.1007/s10107-013-0697-1.

引用本文的文献

1
2
Robust Low-rank Tensor Decomposition with the Criterion.基于该准则的稳健低秩张量分解
Technometrics. 2023;65(4):537-552. doi: 10.1080/00401706.2023.2200541. Epub 2023 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验