Dilshad Saad, Abas Naeem, Hasan Qadeer Ul
Department of Electrical and Computer Engineering, COMSATS University, Islamabad, Pakistan.
Department of Electrical Engineering, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.
Heliyon. 2023 Jun 24;9(7):e17633. doi: 10.1016/j.heliyon.2023.e17633. eCollection 2023 Jul.
The existing air conditioning and cold storage systems use conventional compressor based systems, compelling more electricity and greenhouse gasses (GHG) emissions. The incumbent cooling system uses synthetic refrigerants (CFCs, HCFC, and HFCs) that outperform natural refrigerants but are banned or under time bared permission due to their harmful effects. The global community of (196 parties till 2017) has ratified Paris Accord to limit GHG emissions and use low Global Warming Potential (GWP) refrigerants, and after the ban on existing synthetic refrigerants, quested for suitable natural working fluids and retrofitting in the existing system. Among ASHRAE envisaged natural refrigerants, CO has resurrected as an emerging refrigerant after the availability of high pressure technologies. The proposed design of solar assisted absorption chiller employing CO as a heat transfer fluid for a commercial dwelling is simulated for a dwelling in the hot and humid, moderate and sun adverse region (Lahore, 31.5204° N, 74.3587° E) to assess the thermal properties of the proposed design. A thermal storage tank with immersed heat exchangers augmented to meet the intermittency of solar energy. A solar evacuated glass tube collector (EGTC) with U-shaped copper tubes is used to collect solar heat energy. Integration of renewable energy (RE) systems is inevitable due to the persistent energy crisis and climate change situations. Solar energy is a promising source of energy abundantly available in hot areas. CO is a natural refrigerant that outperforms ASHRAE envisaged natural refrigerants due to the low critical point. A solar thermal cooling system employing a 35.2 kW absorption chiller driven via heat energy harnessed with EGTC using R-744 supported by an auxiliary furnace is simulated in a TRNSYS® Simulation environment. The simulated system covers the cooling requirements of a large three-room dwelling in Lahore, Pakistan. The proposed design comprises an R-744-based solar heating system combined with a hot water-fired absorption chiller. The results were dynamically simulated for the hot climate of Lahore, Pakistan, with average yearly maintained temperatures of 23 °C, 26 °C, and 21 °C for the three rooms and 0.21 solar fraction for the whole year.
现有的空调和冷藏系统采用传统的基于压缩机的系统,消耗更多电力并产生温室气体(GHG)排放。现有的冷却系统使用合成制冷剂(氯氟烃、氢氯氟烃和氢氟烃),这些制冷剂性能优于天然制冷剂,但由于其有害影响而被禁止或在规定时间内受限使用。全球社会(截至2017年有196个缔约方)已批准《巴黎协定》以限制温室气体排放并使用低全球变暖潜能值(GWP)的制冷剂,在现有合成制冷剂被禁止后,开始寻求合适的天然工作流体并对现有系统进行改造。在美国供暖、制冷与空调工程师协会(ASHRAE)设想的天然制冷剂中,随着高压技术的出现,二氧化碳作为一种新兴制冷剂重新受到关注。针对炎热潮湿、温和且阳光不足地区(拉合尔,北纬31.5204°,东经74.3587°)的一处商业住宅,对采用二氧化碳作为传热流体的太阳能辅助吸收式制冷机的拟议设计进行了模拟,以评估该拟议设计的热性能。增设了带有沉浸式热交换器的蓄热罐,以应对太阳能的间歇性。使用带有U形铜管的太阳能真空玻璃管集热器(EGTC)来收集太阳能热能。由于持续的能源危机和气候变化形势,可再生能源(RE)系统的整合势在必行。太阳能是炎热地区大量可用的一种有前景的能源。二氧化碳是一种天然制冷剂,由于其临界点低,性能优于ASHRAE设想的天然制冷剂。在TRNSYS®模拟环境中,对一个采用35.2千瓦吸收式制冷机的太阳能热冷却系统进行了模拟,该制冷机由EGTC利用R-744收集的热能驱动,并由一个辅助炉提供支持。模拟系统满足了巴基斯坦拉合尔一个大三居室住宅的制冷需求。拟议设计包括一个基于R-744的太阳能加热系统与一个热水驱动的吸收式制冷机相结合。针对巴基斯坦拉合尔的炎热气候对结果进行了动态模拟,三个房间的年平均维持温度分别为23°C、26°C和21°C,全年太阳能份额为0.21。