Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA.
Department of Cardiology, Cedars Sinai Smidt Heart Institute, Los Angeles, California, USA.
J Cardiovasc Electrophysiol. 2023 Sep;34(9):1961-1968. doi: 10.1111/jce.16007. Epub 2023 Jul 14.
Insertable cardiac monitors (ICMs) are commonly used to diagnose cardiac arrhythmias. False detections in the latest ICM systems remain an issue, primarily due to inaccurate R-wave sensing. New discrimination algorithms were developed and tested to reduce false detections of atrial fibrillation (AF), pause, and tachycardia episodes in ICMs.
Stored electrograms (EGMs) of AF, pause, and tachycardia episodes detected by Abbott Confirm Rx™ ICMs were extracted from the Merlin.net™ Patient Care Network, and manually adjudicated to establish independent training and testing datasets. New discrimination algorithms were developed to reject false episodes due to inaccurate R-wave sensing, P-wave identification, and R-R interval patterns. The performance of these new algorithms was quantified by false positive reduction (FPR) and true positive maintenance (TPM), relative to the existing algorithms.
The new AF detection algorithm was trained on 5911 EGMs from 744 devices, resulting in 66.9% FPR and 97.8% TPM. In the testing data set of 1354 EGMs from 119 devices, this algorithm achieved 45.8% FPR and 97.0% TPM. The new pause algorithm was trained on 7178 EGMs from 1490 devices, resulting in 70.9% FPR and 98.7% TPM. In the testing data set of 1442 EGMs from 340 devices, this algorithm achieved 74.4% FPR and 99.3% TPM. The new tachycardia algorithm was trained on 520 EGMs from 204 devices, resulting in 57.0% FPR and 96.6% TPM. In the testing data set of 459 EGMs from 237 devices, this algorithm achieved 57.9% FPR and 96.5% TPM.
The new algorithms substantially reduced false AF, pause, and tachycardia episodes while maintaining the majority of true arrhythmia episodes detected by the Abbott ICM algorithms that exist today. Implementing these algorithms in the next-generation ICM systems may lead to improved detection accuracy, in-clinic efficiency, and device battery longevity.
可植入式心脏监测器(ICM)常用于诊断心律失常。最新的 ICM 系统中的假阳性检测仍然是一个问题,主要是由于不准确的 R 波感知。新的鉴别算法被开发并测试,以减少 ICM 中房颤(AF)、暂停和心动过速发作的假阳性检测。
从 Merlin.netTM 患者护理网络中提取 Abbott Confirm RxTM ICM 检测到的 AF、暂停和心动过速发作的存储电图(EGM),并手动裁定以建立独立的训练和测试数据集。新的鉴别算法是为了拒绝由于不准确的 R 波感知、P 波识别和 R-R 间隔模式而导致的假阳性发作而开发的。与现有的算法相比,通过假阳性减少(FPR)和真阳性维持(TPM)来量化这些新算法的性能。
新的 AF 检测算法在 744 个设备的 5911 个 EGM 上进行了训练,其假阳性率为 66.9%,真阳性率为 97.8%。在来自 119 个设备的 1354 个 EGM 的测试数据集上,该算法的假阳性率为 45.8%,真阳性率为 97.0%。新的暂停算法在 1490 个设备的 7178 个 EGM 上进行了训练,其假阳性率为 70.9%,真阳性率为 98.7%。在来自 340 个设备的 1442 个 EGM 的测试数据集上,该算法的假阳性率为 74.4%,真阳性率为 99.3%。新的心动过速算法在 204 个设备的 520 个 EGM 上进行了训练,其假阳性率为 57.0%,真阳性率为 96.6%。在来自 237 个设备的 459 个 EGM 的测试数据集上,该算法的假阳性率为 57.9%,真阳性率为 96.5%。
新算法在维持现有 Abbott ICM 算法检测到的大多数真实心律失常发作的同时,大大减少了假阳性的 AF、暂停和心动过速发作。在下一代 ICM 系统中实施这些算法可能会提高检测准确性、临床效率和设备电池寿命。