Pellitero Miguel Aller, Jensen Isabel M, Dominique Nathaniel L, Ekowo Lilian Chinenye, Camden Jon P, Jenkins David M, Arroyo-Currás Netzahualcóyotl
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35701-35709. doi: 10.1021/acsami.3c06148. Epub 2023 Jul 14.
N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the -0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (-0.1 V) than thiol-based monolayers (-0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure-functionality studies of NHCs on gold.
N-杂环卡宾(NHCs)是一种很有前景的可形成单分子层的配体,在稳定性、表面功能以及与各种过渡金属表面的反应性方面,它能够克服基于硫醇的单分子层的局限性。最近的出版物报道了NHCs在金基底上支持生物分子受体用于传感应用的能力,并且相对于硫醇,其对长时间生物流体暴露具有更高的耐受性。然而,当这些单分子层受到电压扰动时,关于其稳定性仍存在重要问题,而电压扰动是电化学平台应用所必需的。在此,我们研究了两种NHCs,即1,3-二异丙基苯并咪唑和5-(乙氧羰基)-1,3-二异丙基苯并咪唑,从其三氟甲磺酸盐的甲醇溶液中通过自组装形成单分子层的能力。我们将所得单分子层的电化学行为与在磷酸盐缓冲盐水中的基准巯基己醇单分子层的电化学行为进行比较。在相对于Ag|AgCl为 -0.15至0.25 V的电压窗口内,NHC单分子层在金表面上是稳定的,在电化学方面它们的表现类似于基于硫醇的单分子层,并经历相似的重组动力学,在缓冲介质中孵育以及连续伏安法检测下显示出长期稳定性。在负电压下,NHC单分子层在比基于硫醇的单分子层更低的偏压(-0.1 V)下从电极表面阴极解吸(基于硫醇的单分子层为 -0.5 V)。在电压高于0.25 V时,NHC单分子层在与基于硫醇的单分子层相似的电压下从电极表面阳极解吸。这些结果突出了对底层金电极进行电化学检测给NHC单分子层稳定性带来的新限制。我们的结果为未来优化用于电化学应用的金表面上的NHC单分子层以及研究金表面上NHCs的结构-功能关系提供了一个框架。