Suppr超能文献

利用自动化图像分析对山药(Dioscorea alata L.)面粉的淀粉颗粒大小和形状进行表征。

Starch granule size and shape characterization of yam (Dioscorea alata L.) flour using automated image analysis.

机构信息

CIRAD, UMR AGAP Institut, F-34398 Montpellier, France.

UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agronomie, F-34398 Montpellier, France.

出版信息

J Sci Food Agric. 2024 Jun;104(8):4680-4688. doi: 10.1002/jsfa.12861. Epub 2023 Aug 2.

Abstract

BACKGROUND

Roots, tubers and bananas (RTB) play an essential role as staple foods, particularly in Africa. Consumer acceptance for RTB products relies strongly on the functional properties of, which may be affected by the size and shape of its granules. Classically, these are characterized either using manual measurements on microscopic photographs of starch colored with iodine, or using a laser light-scattering granulometer (LLSG). While the former is tedious and only allows the analysis of a small number of granules, the latter only provides limited information on the shape of the starch granule.

RESULTS

In this study, an open-source solution was developed allowing the automated measurement of the characteristic parameters of the size and shape of yam starch granules by applying thresholding and object identification on microscopic photographs. A random forest (RF) model was used to predict the starch granule shape class. This analysis pipeline was successfully applied to a yam diversity panel of 47 genotypes, leading to the characterization of more than 205 000 starch granules. Comparison between the classical and automated method shows a very strong correlation (R = 0.99) and an absence of bias for granule size. The RF model predicted shape class with an accuracy of 83%. With heritability equal to 0.85, the median projected area of the granules varied from 381 to 1115 μm and their observed shapes were ellipsoidal, polyhedral, round and triangular.

CONCLUSION

The results obtained in this study show that the proposed open-source pipeline offers an accurate, robust and discriminating solution for medium-throughput phenotyping of yam starch granule size distribution and shape classification. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

摘要

背景

块根、根茎和香蕉(RTB)作为主食发挥着重要作用,尤其是在非洲。消费者对 RTB 产品的接受程度强烈依赖于其功能特性,而这些特性可能受到颗粒大小和形状的影响。传统上,这些特性要么通过在碘染色的淀粉显微照片上进行手动测量来进行描述,要么通过激光光散射粒度仪(LLSG)来进行描述。虽然前者繁琐,只能分析少量颗粒,但后者只能提供淀粉颗粒形状的有限信息。

结果

在这项研究中,开发了一种开源解决方案,通过在显微照片上应用阈值和目标识别,实现了对山药淀粉颗粒大小和形状特征参数的自动测量。随机森林(RF)模型用于预测淀粉颗粒形状类别。该分析流程成功应用于 47 个基因型的山药多样性面板,对超过 205000 个淀粉颗粒进行了特征描述。经典方法和自动化方法之间的比较显示出很强的相关性(R=0.99),并且颗粒大小没有偏差。RF 模型预测形状类别的准确率为 83%。颗粒的平均投影面积从 381 到 1115μm 不等,其观察到的形状为椭圆形、多面体形、圆形和三角形,其遗传力为 0.85。

结论

本研究的结果表明,所提出的开源流水线为山药淀粉颗粒大小分布和形状分类的高通量表型分析提供了一种准确、稳健和有区别的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验