Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, Paris, France.
Institut Camille Jordan, UMR 5208 CNRS and Universite Claude Bernard Lyon 1, Villeurbanne, France.
J Math Biol. 2023 Jul 16;87(2):30. doi: 10.1007/s00285-023-01926-4.
Understanding the temporal spread of gene drive alleles-alleles that bias their own transmission-through modeling is essential before any field experiments. In this paper, we present a deterministic reaction-diffusion model describing the interplay between demographic and allelic dynamics, in a one-dimensional spatial context. We focused on the traveling wave solutions, and more specifically, on the speed of gene drive invasion (if successful). We considered various timings of gene conversion (in the zygote or in the germline) and different probabilities of gene conversion (instead of assuming 100[Formula: see text] conversion as done in a previous work). We compared the types of propagation when the intrinsic growth rate of the population takes extreme values, either very large or very low. When it is infinitely large, the wave can be either successful or not, and, if successful, it can be either pulled or pushed, in agreement with previous studies (extended here to the case of partial conversion). In contrast, it cannot be pushed when the intrinsic growth rate is vanishing. In this case, analytical results are obtained through an insightful connection with an epidemiological SI model. We conducted extensive numerical simulations to bridge the gap between the two regimes of large and low growth rate. We conjecture that, if it is pulled in the two extreme regimes, then the wave is always pulled, and the wave speed is independent of the growth rate. This occurs for instance when the fitness cost is small enough, or when there is stable coexistence of the drive and the wild-type in the population after successful drive invasion. Our model helps delineate the conditions under which demographic dynamics can affect the spread of a gene drive.
在进行任何实地实验之前,通过建模来理解基因驱动等位基因(即偏向自身传播的等位基因)的时间传播至关重要。在本文中,我们提出了一个确定性的反应扩散模型,描述了在一维空间背景下人口动态和等位基因动态之间的相互作用。我们专注于传播波解,更具体地说,是基因驱动入侵的速度(如果成功的话)。我们考虑了不同的基因转换时机(在合子或生殖细胞中)和不同的基因转换概率(而不是像以前的工作那样假设 100%的转换)。我们比较了当种群的内在增长率取极值时,即非常大或非常小时的传播类型。当它无穷大时,波可以成功或不成功,如果成功,它可以被拉动或推动,这与之前的研究结果一致(这里扩展到部分转换的情况)。相反,当内在增长率为零时,它不能被推动。在这种情况下,通过与流行病学 SI 模型的深入联系,可以获得解析结果。我们进行了广泛的数值模拟,以弥合大增长率和低增长率这两个区间之间的差距。我们推测,如果在两个极端情况下被拉动,那么波总是被拉动的,波速与增长率无关。当适应度成本足够小时,或者在成功驱动入侵后驱动和野生型在种群中稳定共存时,就会发生这种情况。我们的模型有助于描绘人口动态如何影响基因驱动传播的条件。