Suppr超能文献

一种改进的多元线性回归变量选择的连续投影算法版本。

An improved successive projections algorithm version to variable selection in multiple linear regression.

机构信息

Instituto de Química, IQ, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Agronomia, 91501970, Porto Alegre, RS, Brazil.

Dpto. de Química, Universidad Nacional del Sur, INQUISUR, Av. Alem 1253, B8000CPB, Bahía Blanca, Buenos Aires, Argentina.

出版信息

Anal Chim Acta. 2023 Sep 15;1274:341560. doi: 10.1016/j.aca.2023.341560. Epub 2023 Jun 26.

Abstract

The aim of the successive projections algorithm (SPA) is to enhance the accuracy of multiple linear regressions (MLR) by minimizing the impact of collinearity effects in the calibration data set. Combining SPA with MLR as a variable selection approach has resulted in the SPA-MLR method, which has been reported in literature to produce models with good prediction ability compared to conventional full-spectrum models obtained with partial-least-squares (PLS) in some cases. This paper proposes the addition of a filter step to the current version of the SPA algorithm to reduce the number of uninformative variables before the projection phase and assist the algorithm in selecting the best variables on subsequent steps. The proposed fSPA-MLR algorithm is evaluated in two case studies involving the near-infrared spectrometric analysis of pharmaceutical tablet and diesel/biodiesel mixture samples. Compared to PLS, the fSPA-MLR models demonstrate similar or better performance. Moreover, the fSPA-MLR models outperform the original SPA-MLR in both cross-validation and external prediction. The fSPA-MLR models deliver superior results regardless of the pre-processing algorithm tested, including first-derivative Savitzky-Golay (SG) and Standard Normal Variate (SNV), or even in raw spectra data.

摘要

连续投影算法(SPA)的目的是通过最小化校准数据集的共线性影响来提高多元线性回归(MLR)的准确性。将 SPA 与 MLR 结合作为变量选择方法,产生了 SPA-MLR 方法,该方法在某些情况下被报道与传统的基于偏最小二乘法(PLS)的全谱模型相比,具有良好的预测能力。本文提出在当前版本的 SPA 算法中添加一个滤波器步骤,以减少投影阶段之前无信息变量的数量,并在后续步骤中协助算法选择最佳变量。在涉及药物片剂和柴油/生物柴油混合物样品的近红外光谱分析的两个案例研究中,评估了所提出的 fSPA-MLR 算法。与 PLS 相比,fSPA-MLR 模型表现出相似或更好的性能。此外,fSPA-MLR 模型在交叉验证和外部预测方面均优于原始 SPA-MLR。无论测试的预处理算法如何,包括一阶 Savitzky-Golay(SG)和标准正态变量(SNV),甚至在原始光谱数据中,fSPA-MLR 模型都能提供更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验