Suppr超能文献

分数耦合器中静态和移动孤子的对称破缺转变。

Symmetry-breaking transitions in quiescent and moving solitons in fractional couplers.

作者信息

Strunin Dmitry V, Malomed Boris A

机构信息

School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, P.O.B. 39040, Tel Aviv, Israel.

出版信息

Phys Rev E. 2023 Jun;107(6-1):064203. doi: 10.1103/PhysRevE.107.064203.

Abstract

We consider phase transitions, in the form of spontaneous symmetry breaking (SSB) bifurcations of solitons, in dual-core couplers with fractional diffraction and cubic self-focusing acting in each core, characterized by Lévy index α. The system represents linearly coupled optical waveguides with the fractional paraxial diffraction or group-velocity dispersion (the latter system was used in a recent experiment [Nat. Commun. 14, 222 (2023)10.1038/s41467-023-35892-8], which demonstrated the first observation of the wave propagation in an effectively fractional setup). By dint of numerical computations and variational approximation, we identify the SSB in the fractional coupler as the bifurcation of the subcritical type (i.e., the symmetry-breaking phase transition of the first kind), whose subcriticality becomes stronger with the increase of fractionality 2-α, in comparison with very weak subcriticality in the case of the nonfractional diffraction, α=2. In the Cauchy limit of α→1, it carries over into the extreme subcritical bifurcation, manifesting backward-going branches of asymmetric solitons which never turn forward. The analysis of the SSB bifurcation is extended for moving (tilted) solitons, which is a nontrivial problem because the fractional diffraction does not admit Galilean invariance. Collisions between moving solitons are studied too, featuring a two-soliton symmetry-breaking effect and merger of the solitons.

摘要

我们考虑在具有分数衍射和每个芯中立方自聚焦的双核耦合器中,以孤子的自发对称破缺(SSB)分岔形式出现的相变,其特征由Lévy指数α表征。该系统表示具有分数傍轴衍射或群速度色散的线性耦合光波导(后一种系统用于最近的一个实验[《自然·通讯》14, 222 (2023)10.1038/s41467-023-35892-8],该实验首次展示了在有效分数设置中的波传播)。通过数值计算和变分近似,我们确定分数耦合器中的SSB为亚临界类型的分岔(即第一类对称破缺相变),与非分数衍射(α = 2)情况下非常弱的亚临界性相比,其亚临界性随着分数性2-α的增加而变得更强。在α→1的柯西极限下,它转变为极端亚临界分岔,表现为不对称孤子的向后分支,这些分支永远不会向前转向。对SSB分岔的分析扩展到了移动(倾斜)孤子,这是一个不平凡的问题,因为分数衍射不允许伽利略不变性。还研究了移动孤子之间的碰撞,其特征是双孤子对称破缺效应和孤子的合并。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验