Piorecka Kinga, Kurjata Jan, Gostynski Bartłomiej, Kazmierski Slawomir, Stanczyk Wlodzimierz A, Marcinkowska Monika, Janaszewska Anna, Klajnert-Maculewicz Barbara
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland.
RSC Adv. 2023 Jul 17;13(31):21421-21431. doi: 10.1039/d3ra02608f. eCollection 2023 Jul 12.
Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest Δ -12 kcal mol) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.
癌症是一个全球性的健康问题,是仅次于心血管疾病的全球第二大致死原因。癌症的主要治疗方法包括手术、放疗和化疗,其中重点是化疗。因此,为寻求更有效、更安全的癌症治疗方法而开展的纳米化学和纳米医学研究是当前的一个重要研究领域。下面,我们介绍阿霉素和吖啶黄的相互作用以及这些药物纳米复合物对子宫颈癌(HeLa)细胞的细胞毒性。从核磁共振测量和荧光光谱获得的实验结果表明,药物之间的相互作用是由于范德华力、氢键形成和π-π堆积。量子分子模拟证实了关于现有π-π堆积的实验结果。此外还表明,在所应用的理论水平(密度泛函理论,三重ζ基组)上,堆积相互作用在形成吖啶黄体系的分子之间以及其他组分——另一种药物(阿霉素)二聚体之间都是最有利的相互作用(最低Δ为-12千卡/摩尔)。对HeLa细胞进行的生物学测试表明,在孵育24小时和48小时后,复合物均具有高细胞毒性,与游离药物(ACF和DOX)相当。对于非癌细胞,在短孵育期的情况下,观察到药物和复合物的细胞毒性存在统计学上的显著差异。摄取研究结果表明,无论单独给药还是与蒽环类药物联合给药,吖啶黄的细胞摄取效率均明显高于阿霉素。未来应更好地理解决定吖啶黄和ACF : DOX复合物对非癌细胞和癌细胞选择性摄取的机制,因为这在设计具有毒性的抗癌药物复合物中可能至关重要。