Pons Flavio, Messori Gabriele, Faranda Davide
LSCE-IPSL, CEA Saclay l'Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
Department of Earth Sciences and Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, Uppsala 752 36, Sweden.
Chaos. 2023 Jul 1;33(7). doi: 10.1063/5.0152370.
We investigate various estimators based on extreme value theory (EVT) for determining the local fractal dimension of chaotic dynamical systems. In the limit of an infinitely long time series of an ergodic system, the average of the local fractal dimension is the system's global attractor dimension. The latter is an important quantity that relates to the number of effective degrees of freedom of the underlying dynamical system, and its estimation has been a central topic in the dynamical systems literature since the 1980s. In this work, we propose a framework that combines phase space recurrence analysis with EVT to estimate the local fractal dimension around a particular state of interest. While the EVT framework allows for the analysis of high-dimensional complex systems, such as the Earth's climate, its effectiveness depends on robust statistical parameter estimation for the assumed extreme value distribution. In this study, we conduct a critical review of several EVT-based local fractal dimension estimators, analyzing and comparing their performance across a range of systems. Our results offer valuable insights for researchers employing the EVT-based estimates of the local fractal dimension, aiding in the selection of an appropriate estimator for their specific applications.
我们研究了基于极值理论(EVT)的各种估计器,用于确定混沌动力系统的局部分形维数。在遍历系统的无限长时间序列的极限情况下,局部分形维数的平均值就是系统的全局吸引子维数。后者是一个重要的量,它与基础动力系统的有效自由度数量相关,自20世纪80年代以来,其估计一直是动力系统文献中的核心主题。在这项工作中,我们提出了一个框架,将相空间递归分析与EVT相结合,以估计围绕特定感兴趣状态的局部分形维数。虽然EVT框架允许分析高维复杂系统,如地球气候,但其有效性取决于对假定极值分布的稳健统计参数估计。在本研究中,我们对几种基于EVT的局部分形维数估计器进行了批判性综述,分析并比较了它们在一系列系统中的性能。我们的结果为使用基于EVT的局部分形维数估计的研究人员提供了有价值的见解,有助于为其特定应用选择合适的估计器。