School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom.
Primate Models for Behavioural Evolution Lab, School of Anthropology and Museum Ethnography, Oxford, United Kingdom.
PLoS One. 2023 Jul 20;18(7):e0277130. doi: 10.1371/journal.pone.0277130. eCollection 2023.
Dominance rank is a vital descriptor of social dynamics in animal societies and regularly used in studies to explain observed interaction patterns. However, researchers can choose between different indices and standardizations, and can specify dyadic rank relations differently when studying interaction distributions. These researcher degrees of freedom potentially introduce biases into studies and reduce replicability. Here, I demonstrate the impact of researcher choices by comparing the performance of different combinations of rank index, standardization, and model specification when explaining dyadic interaction patterns in sooty mangabeys (Cercocebus atys atys). I show that while no combination consistently performed best across interaction types (aggression, grooming, proximity, supplants), model specifications allowing for nonlinear patterns performed better than other models on average. Choices made in pre-processing and model building impacted model performance and subsequent interpretation of results. Researchers could end up describing social systems differently based on the same data. These results highlight the impact of researcher choices in the processing of behavioural data and potential limitations when using indirect species comparisons in animal behaviour research. To increase repeatability, researchers could make the impact of their processing choices more transparent and report results using a variety of indices and model specifications.
优势等级是动物社会动态的一个重要描述符,经常用于研究中,以解释观察到的相互作用模式。然而,研究人员在研究相互作用分布时,可以在不同的指数和标准化之间进行选择,并以不同的方式指定对偶等级关系。这些研究人员的自由度可能会给研究带来偏差,降低可重复性。在这里,我通过比较不同等级指数、标准化和模型规范组合在解释黑长尾猴(Cercocebus atys atys)对偶相互作用模式时的表现,来展示研究人员选择的影响。我表明,虽然没有一种组合在所有相互作用类型(攻击、梳理、接近、取代)上都始终表现最佳,但允许非线性模式的模型规范平均表现优于其他模型。预处理和模型构建中的选择会影响模型的性能以及对结果的后续解释。研究人员可能会根据相同的数据对社会系统进行不同的描述。这些结果强调了在处理行为数据时研究人员选择的影响,以及在动物行为研究中使用间接物种比较时的潜在局限性。为了提高可重复性,研究人员可以使他们的处理选择的影响更加透明,并使用各种指数和模型规范报告结果。