Suppr超能文献

使用分子动力学模拟和伞式采样技术研究细菌阳离子氨基酸转运蛋白(GkApcT)在精氨酸转运过程中的分子细节。

Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques.

机构信息

Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran.

Department of Chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA.

出版信息

J Mol Model. 2023 Jul 21;29(8):260. doi: 10.1007/s00894-023-05670-w.

Abstract

CONTEXT

Cationic amino acid transporters (CATs) facilitate arginine transport across membranes and maintain its levels in various tissues and organs, but their overexpression has been associated with severe cancers. A recent study identified the alternating access mechanism and critical residues involved in arginine transportation in a cationic amino acid transporter from Geobacillus kaustophilus (GkApcT). Here, we used molecular dynamics (MD) simulation methods to investigate the transportation mechanism of arginine (Arg) through GkApcT. The results revealed that arginine strongly interacts with specific binding site residues (Thr43, Asp111, Glu115, Lys191, Phe231, Ile234, and Asp237). Based on the umbrella sampling, the main driving force for arginine transport is the polar interactions of the arginine with channel-lining residues. An in-depth description of the dissociation mechanism and binding energy analysis brings valuable insight into the interactions between arginine and transporter residues, facilitating the design of effective CAT inhibitors in cancer cells.

METHODS

The membrane-protein system was constructed by uploading the prokaryotic CAT (PDB ID: 6F34) to the CHARMM-GUI web server. Molecular dynamics simulations were done using the GROMACS package, version 5.1.4, with the CHARMM36 force field and TIP3P water model. The MM-PBSA approach was performed for determining the arginine binding free energy. Furthermore, the hotspot residues were identified through per-residue decomposition analysis. The characteristics of the channel such as bottleneck radius and channel length were analyzed using the CaverWeb 1.1 web server. The proton wire inside the transporter was investigated based on the classic Grotthuss mechanism. We also investigated the atomistic details of arginine transportation using the path-based free energy umbrella sampling technique (US).

摘要

背景

阳离子氨基酸转运体 (CATs) 促进精氨酸跨膜运输,并维持其在各种组织和器官中的水平,但它们的过度表达与严重癌症有关。最近的一项研究确定了来自解淀粉芽孢杆菌 (GkApcT) 的阳离子氨基酸转运体中涉及精氨酸运输的交替访问机制和关键残基。在这里,我们使用分子动力学 (MD) 模拟方法研究了精氨酸 (Arg) 通过 GkApcT 的运输机制。结果表明,精氨酸与特定结合位点残基 (Thr43、Asp111、Glu115、Lys191、Phe231、Ile234 和 Asp237) 强烈相互作用。基于伞状采样,Arg 运输的主要驱动力是 Arg 与通道衬里残基的极性相互作用。对离解机制和结合能分析的深入描述,为深入了解精氨酸与转运体残基之间的相互作用提供了有价值的见解,有助于设计有效的癌症细胞中的 CAT 抑制剂。

方法

通过将原核 CAT(PDB ID:6F34)上传到 CHARMM-GUI 网络服务器来构建膜蛋白系统。使用 GROMACS 包,版本 5.1.4,使用 CHARMM36 力场和 TIP3P 水模型进行分子动力学模拟。使用 MM-PBSA 方法确定精氨酸结合自由能。此外,通过逐残基分解分析确定热点残基。使用 CaverWeb 1.1 网络服务器分析通道的特征,如瓶颈半径和通道长度。根据经典的 Grotthuss 机制研究转运体内部的质子导线。我们还使用基于路径的自由能伞状采样技术 (US) 研究精氨酸运输的原子细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验