Luo Weicheng, Luo Ya-Wei
State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
Comput Struct Biotechnol J. 2023 Jul 6;21:3503-3512. doi: 10.1016/j.csbj.2023.07.006. eCollection 2023.
is the dominant photoautotrophic dinitrogen (N) fixer (diazotroph) in the ocean. Iron is an important factor limiting growth of marine diazotrophs including mainly because of high iron content of its N-fixing enzyme, nitrogenase. However, it still lacks a quantitative understanding of how dynamic iron allocation among physiological processes acts to regulate growth and N fixation in . Here, we constructed a model of trichome in which intracellular iron could be dynamically re-allocated in photosystems and nitrogenase during the daytime. The results demonstrate that the dynamic iron allocation enhances modeled N fixation and growth rates of , especially in iron-limited conditions, albeit having a marginal impact under high iron concentrations. Although the reuse of iron during a day is an apparent cause that dynamic iron allocation can benefit under iron limitation, our model reveals two important mechanisms. First, the release of iron from photosystems downregulates the intracellular oxygen (O) production and reduces the demand of respiratory protection, a process that wastefully respires carbohydrates to create a lower O window for N fixation. Hence, more carbohydrates can be used in growth. Second, lower allocation of iron to nitrogenase during early daytime, a period when photosynthesis is active and intracellular O is high, reduces the amount of iron that is trapped in the inactivated nitrogenase induced by O. This mechanism further increases the iron use efficiency in . Overall, our study provides mechanistic and quantitative insight into the diurnal iron allocation that can alleviate iron limitation to .
是海洋中占主导地位的光合自养固氮菌(固氮生物)。铁是限制包括 在内的海洋固氮生物生长的重要因素,主要是因为其固氮酶(氮ase)含铁量高。然而,对于生理过程中动态铁分配如何调节 中的生长和固氮作用,仍缺乏定量的认识。在这里,我们构建了一个 藻丝体模型,其中白天细胞内的铁可以在光系统和固氮酶之间动态重新分配。结果表明,动态铁分配提高了模拟的 固氮和生长速率,特别是在铁限制条件下,尽管在高铁浓度下影响较小。虽然一天中铁的再利用是动态铁分配在铁限制下有利于 的一个明显原因,但我们的模型揭示了两个重要机制。首先,光系统中铁的释放下调了细胞内氧气(O)的产生,减少了呼吸保护的需求,呼吸保护是一个过程,即 浪费地呼吸碳水化合物以创造一个较低的O窗口用于固氮。因此,更多的碳水化合物可用于生长。其次,在白天早期,即光合作用活跃且细胞内O含量高的时期,减少向固氮酶的铁分配,减少了被O诱导的失活固氮酶中捕获的铁量。这种机制进一步提高了 中的铁利用效率。总体而言,我们的研究为昼夜铁分配提供了机制和定量的见解,这种分配可以缓解 中的铁限制。