Suppr超能文献

从粗到细:用于修复被眼睑和睫毛遮挡的虹膜纹理的两阶段深度残差注意力生成对抗网络。

From coarse to fine: Two-stage deep residual attention generative adversarial network for repair of iris textures obscured by eyelids and eyelashes.

作者信息

Chen Ying, Zeng Yugang, Xu Liang, Guo Shubin, Heidari Ali Asghar, Chen Huiling, Zhang Yudong

机构信息

School of Software, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.

School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

iScience. 2023 Jun 21;26(7):107169. doi: 10.1016/j.isci.2023.107169. eCollection 2023 Jul 21.

Abstract

We propose a two-stage deep residual attention generative adversarial network (TSDRA-GAN) for inpainting iris textures obscured by eyelids. This two-stage generation approach ensures that the semantic and texture information of the generated images is preserved. In the second stage of the fine network, a modified residual block (MRB) is used to further extract features and mitigate the performance degradation caused by the deepening of the network, thus following the concept of using a residual structure as a component of the encoder. In addition, for the skip connection part of this phase, we propose a dual-attention computing connection (DACC) to computationally fuse the features of the encoder and decoder in both directions to achieve more effective information fusion for iris inpainting tasks. Under completely fair and equal experimental conditions, it is shown that the method presented in this paper can effectively restore original iris images and improve recognition accuracy.

摘要

我们提出了一种用于修复被眼睑遮挡的虹膜纹理的两阶段深度残差注意力生成对抗网络(TSDRA-GAN)。这种两阶段生成方法确保了生成图像的语义和纹理信息得以保留。在精细网络的第二阶段,使用了一个改进的残差块(MRB)来进一步提取特征并减轻由于网络加深而导致的性能下降,从而遵循了将残差结构用作编码器组件的概念。此外,对于此阶段的跳跃连接部分,我们提出了一种双注意力计算连接(DACC),以在两个方向上对编码器和解码器的特征进行计算融合,从而为虹膜修复任务实现更有效的信息融合。在完全公平和平等的实验条件下,结果表明本文提出的方法能够有效地恢复原始虹膜图像并提高识别准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f3/10359935/326972e3dbb5/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验