Zhou Junjie, Pang Aiping, Zhou Hongbo
College of Electrical Engineering, Guizhou University, Guiyang 550025, China.
iScience. 2023 Jun 28;26(7):107213. doi: 10.1016/j.isci.2023.107213. eCollection 2023 Jul 21.
The space gravitational wave detection mission requires a super "static and precise" scientific experiment environment. In order to solve the non-conservative force disturbance variation and the actuator noise and measurement noise, this paper designs a drag-free control scheme based on active disturbance rejection control (ADRC) framework to achieve the high-precision index. According to the ultra-high accuracy, low bandwidth limitation, and robustness requirements of drag-free satellite, the H controller satisfying the robustness constraint is designed as an active disturbance rejection feedback controller to achieve the high-precision index. Meanwhile, the non-conservative force disturbance with a wide range of variations is estimated and feedforward compensated by an extended state observer to improve the system robustness. Simulation results show that the control system can achieve the relative displacement of 2 nm/Hznm/Hz for the drag-free satellite platform and the residual acceleration of 1 × 10 m/sm/s/Hz for the test mass.
空间引力波探测任务需要一个超级“静态且精确”的科学实验环境。为了解决非保守力干扰变化以及执行器噪声和测量噪声问题,本文设计了一种基于自抗扰控制(ADRC)框架的无拖曳控制方案,以实现高精度指标。根据无拖曳卫星的超高精度、低带宽限制和鲁棒性要求,将满足鲁棒性约束的H控制器设计为自抗扰反馈控制器,以实现高精度指标。同时,利用扩张状态观测器估计大范围变化的非保守力干扰并进行前馈补偿,以提高系统鲁棒性。仿真结果表明,该控制系统对于无拖曳卫星平台可实现2 nm/Hz的相对位移,对于测试质量可实现1×10 m/s/Hz的残余加速度。