Fukushima Tomohiro, Fukasawa Motoki, Murakoshi Kei
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
J Phys Chem Lett. 2023 Aug 3;14(30):6808-6813. doi: 10.1021/acs.jpclett.3c01596. Epub 2023 Jul 24.
The oxygen evolution reaction (OER) is a crucial electrochemical process for hydrogen production in water electrolysis. However, due to the involvement of multiple proton-coupled electron transfer steps, it is challenging to identify the specific elementary reaction that limits the rate of the OER. Here we employed a machine-learning-based approach to extract the reaction pathway exhaustively from experimental data. Genetic algorithms were applied to search for thermodynamic and kinetic parameters using the current-electrochemical potential relationship of the OER. Interestingly, analysis of the datasets revealed the energy state distributions of reaction intermediates, which likely originated in the interactions among intermediates or the distribution of multiple sites. Through our exhaustive analyses, we successfully uncovered the hidden energy profiles of the OER. This approach can reveal the reaction pathway to activate for efficient hydrogen production, which facilitates the design of catalysts.
析氧反应(OER)是水电解制氢过程中的一个关键电化学过程。然而,由于涉及多个质子耦合电子转移步骤,确定限制OER速率的具体基元反应具有挑战性。在此,我们采用基于机器学习的方法从实验数据中详尽地提取反应路径。利用OER的电流-电化学势关系,应用遗传算法搜索热力学和动力学参数。有趣的是,对数据集的分析揭示了反应中间体的能量状态分布,这可能源于中间体之间的相互作用或多个位点的分布。通过我们详尽的分析,成功揭示了OER隐藏的能量分布。这种方法可以揭示激活高效制氢的反应路径,有助于催化剂的设计。