20 年来美国住院患者人群中按种族/族裔划分的多种合并症趋势。

20-year trends in multimorbidity by race/ethnicity among hospitalized patient populations in the United States.

机构信息

Cumming School of Medicine, Undergraduate Medical Education, University of Calgary, Calgary, AB, Canada.

Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

出版信息

Int J Equity Health. 2023 Jul 24;22(1):137. doi: 10.1186/s12939-023-01950-2.

Abstract

BACKGROUND

The challenges presented by multimorbidity continue to rise in the United States. Little is known about how the relative contribution of individual chronic conditions to multimorbidity has changed over time, and how this varies by race/ethnicity. The objective of this study was to describe trends in multimorbidity by race/ethnicity, as well as to determine the differential contribution of individual chronic conditions to multimorbidity in hospitalized populations over a 20-year period within the United States.

METHODS

This is a serial cross-sectional study using the Nationwide Inpatient Sample (NIS) from 1993 to 2012. We identified all hospitalized patients aged ≥ 18 years old with available data on race/ethnicity. Multimorbidity was defined as the presence of 3 or more conditions based on the Elixhauser comorbidity index. The relative change in the proportion of hospitalized patients with multimorbidity, overall and by race/ethnicity (Black, White, Hispanic, Asian/Pacific Islander, Native American) were tabulated and presented graphically. Population attributable fractions were estimated from modified Poisson regression models adjusted for sex, age, and insurance type. These fractions were used to describe the relative contribution of individual chronic conditions to multimorbidity over time and across racial/ethnic groups.

RESULTS

There were 123,613,970 hospitalizations captured within the NIS between 1993 and 2012. The prevalence of multimorbidity increased in all race/ethnic groups over the 20-year period, most notably among White, Black, and Native American populations (+ 29.4%, + 29.7%, and + 32.0%, respectively). In both 1993 and 2012, Black hospitalized patients had a higher prevalence of multimorbidity (25.1% and 54.8%, respectively) compared to all other race/ethnic groups. Native American populations exhibited the largest overall increase in multimorbidity (+ 32.0%). Furthermore, the contribution of metabolic diseases to multimorbidity increased, particularly among Hispanic patients who had the highest population attributable fraction values for diabetes without complications (15.0%), diabetes with complications (5.1%), and obesity (5.8%).

CONCLUSIONS

From 1993 to 2012, the secular increases in the prevalence of multimorbidity as well as changes in the differential contribution of individual chronic conditions has varied substantially by race/ethnicity. These findings further elucidate the racial/ethnic gaps prevalent in multimorbidity within the United States.

PRIOR PRESENTATIONS

Preliminary finding of this study were presented at the Society of General Internal Medicine (SGIM) Annual Conference, Washington, DC, April 21, 2017.

摘要

背景

在美国,多种疾病带来的挑战持续增加。目前人们对于各种慢性疾病对多种疾病的相对贡献随时间推移的变化,以及这种变化如何因种族/民族而异知之甚少。本研究的目的是描述按种族/民族划分的多种疾病的趋势,并确定在美国 20 年期间住院人群中各种慢性疾病对多种疾病的不同贡献。

方法

这是一项使用 1993 年至 2012 年全国住院患者样本(NIS)的连续横断面研究。我们确定了所有年龄在 18 岁及以上且具有种族/民族数据的住院患者。多种疾病定义为存在 3 种或更多种疾病,基于 Elixhauser 合并症指数。列出并以图形方式显示总体和按种族/民族(黑人、白人、西班牙裔、亚洲/太平洋岛民、美国原住民)划分的患有多种疾病的住院患者比例的相对变化。使用调整性别、年龄和保险类型的修正泊松回归模型估计人群归因分数。这些分数用于描述各种慢性疾病随时间和跨种族/民族群体对多种疾病的相对贡献。

结果

在 1993 年至 2012 年期间,NIS 共收录了 123613970 例住院患者。在 20 年期间,所有种族/民族群体的多种疾病患病率均有所增加,其中白人、黑人、美国原住民人群的增幅最大(分别为+29.4%、+29.7%和+32.0%)。1993 年和 2012 年,黑人住院患者的多种疾病患病率均高于其他所有种族/民族群体(分别为 25.1%和 54.8%)。美国原住民人群的多种疾病患病率总体增幅最大(+32.0%)。此外,代谢性疾病对多种疾病的贡献增加,尤其是在西班牙裔患者中,糖尿病无并发症(15.0%)、糖尿病合并并发症(5.1%)和肥胖症(5.8%)的人群归因分数值最高。

结论

从 1993 年到 2012 年,多种疾病的流行率的季节性增加以及各种慢性疾病的相对贡献的变化,在种族/民族方面存在很大差异。这些发现进一步阐明了美国多种疾病中普遍存在的种族/民族差异。

先前的介绍

本研究的初步结果在美国华盛顿特区举行的普通内科学会(SGIM)年会上公布,日期为 2017 年 4 月 21 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426c/10367428/17c3d5d33094/12939_2023_1950_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索