Suppr超能文献

通过软骨传导声音刺激对听小骨和骨壁振动进行体内测量。

In Vivo Measurement of Ear Ossicle and Bony Wall Vibration by Sound Stimulation of Cartilage Conduction.

作者信息

Yazama Hiroaki, Arii Shiro, Kataoka Hideyuki, Watanabe Tasuku, Kamitani Ryo, Fujiwara Kazunori

机构信息

Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-machi, Yonago 683-8504, Japan.

Kanki Rotordynamics Lab, 1646 Higashikanki-cyo, Kakogawa 675-0057, Japan.

出版信息

Audiol Res. 2023 Jul 12;13(4):495-505. doi: 10.3390/audiolres13040044.

Abstract

The cartilage-conduction pathway was recently proposed as a third auditory pathway; however, middle-ear vibrations have not yet been investigated in vivo. We aimed to measure the ossicles and bone vibration upon cartilage-conduction stimulation with a non-contact laser Doppler vibrometer. We recruited adult patients with normal ear structures who underwent cochlear implant surgery at our hospital between April 2020 and December 2022. For sound input, a cartilage-conduction transducer, custom-made by RION Corporation (Tokyo, Japan), was fixed to the surface of the tragus and connected to an audiometer to regulate the output. A posterior tympanotomy was performed and a laser beam was directed through the cavity to measure the vibration of the ossicles, cochlear promontory, and posterior wall of the external auditory canal. Five participants (three men, mean age: 56.4 years) were included. The mean hearing loss on the operative side was 96.3 dB HL in one patient, and that of the other patients was off-scale. The vibrations were measured at a sound input of 1 kHz and 60 dB. We observed vibrations of all three structures, demonstrating the existence of cartilage-conduction pathways in vivo. These results may help uncover the mechanisms of the cartilage-conduction pathway in the future.

摘要

软骨传导途径最近被提出作为第三条听觉通路;然而,中耳振动尚未在体内进行研究。我们旨在使用非接触式激光多普勒振动计测量软骨传导刺激时听小骨和骨骼的振动。我们招募了2020年4月至2022年12月期间在我院接受人工耳蜗植入手术且耳部结构正常的成年患者。对于声音输入,由日本东京的理音株式会社定制的软骨传导换能器固定在耳屏表面,并连接到听力计以调节输出。进行后鼓室切开术,将激光束穿过该腔以测量听小骨、蜗窗岬和外耳道后壁的振动。纳入了5名参与者(3名男性,平均年龄:56.4岁)。1例患者手术侧平均听力损失为96.3 dB HL,其他患者的听力损失超出范围。在1 kHz和60 dB的声音输入下测量振动。我们观察到所有三个结构的振动,证明了体内软骨传导途径的存在。这些结果可能有助于未来揭示软骨传导途径的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada4/10366828/199a6172a37a/audiolres-13-00044-g001.jpg

相似文献

1
In Vivo Measurement of Ear Ossicle and Bony Wall Vibration by Sound Stimulation of Cartilage Conduction.
Audiol Res. 2023 Jul 12;13(4):495-505. doi: 10.3390/audiolres13040044.
2
Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
Hear Res. 2013 Dec;306:11-20. doi: 10.1016/j.heares.2013.08.015. Epub 2013 Sep 15.
4
Cartilage conduction as the third pathway for sound transmission.
Auris Nasus Larynx. 2019 Apr;46(2):151-159. doi: 10.1016/j.anl.2019.01.005. Epub 2019 Feb 2.
5
Experimental investigation of the effect of middle ear in bone conduction.
Hear Res. 2020 Sep 15;395:108041. doi: 10.1016/j.heares.2020.108041. Epub 2020 Jul 30.
6
Effect of freezing and embalming of human cadaveric whole head specimens on bone conduction.
Hear Res. 2023 Mar 1;429:108700. doi: 10.1016/j.heares.2023.108700. Epub 2023 Jan 13.
7
Cartilage conduction efficiently generates airborne sound in the ear canal.
Auris Nasus Larynx. 2015 Feb;42(1):15-9. doi: 10.1016/j.anl.2014.08.001. Epub 2014 Sep 8.
8
Bone-conduction hearing and the occlusion effect in otosclerosis and normal controls.
Otol Neurotol. 2005 Nov;26(6):1138-42. doi: 10.1097/01.mao.0000179996.82402.e0.
9
Simulation of soft tissue stimulation-Indication of a skull bone vibration mechanism in bone conduction hearing.
Hear Res. 2022 May;418:108471. doi: 10.1016/j.heares.2022.108471. Epub 2022 Feb 23.

引用本文的文献

1
Soft Tissue Conduction Activates the Auditory Pathway in the Brain.
Audiol Res. 2024 Feb 16;14(1):196-203. doi: 10.3390/audiolres14010018.

本文引用的文献

1
Vibrational and Acoustical Characteristics of Ear Pinna Simulators That Differ in Hardness.
Audiol Res. 2021 Jul 1;11(3):327-334. doi: 10.3390/audiolres11030030.
2
Cartilage conduction as the third pathway for sound transmission.
Auris Nasus Larynx. 2019 Apr;46(2):151-159. doi: 10.1016/j.anl.2019.01.005. Epub 2019 Feb 2.
3
Sequential motion of the ossicular chain measured by laser Doppler vibrometry.
Acta Otolaryngol. 2017 Dec;137(12):1233-1237. doi: 10.1080/00016489.2017.1357833. Epub 2017 Jul 31.
4
Intraoperative assessment of ossicular fixation.
Hear Res. 2016 Oct;340:99-106. doi: 10.1016/j.heares.2016.03.004. Epub 2016 Mar 28.
5
Inner ear contribution to bone conduction hearing in the human.
Hear Res. 2015 Nov;329:41-51. doi: 10.1016/j.heares.2014.12.003. Epub 2014 Dec 18.
6
Cartilage conduction hearing.
J Acoust Soc Am. 2014 Apr;135(4):1959-66. doi: 10.1121/1.4868372.
7
Cartilage conduction efficiently generates airborne sound in the ear canal.
Auris Nasus Larynx. 2015 Feb;42(1):15-9. doi: 10.1016/j.anl.2014.08.001. Epub 2014 Sep 8.
9
Is cartilage conduction classified into air or bone conduction?
Laryngoscope. 2014 May;124(5):1214-9. doi: 10.1002/lary.24485. Epub 2013 Nov 19.
10
Measurement of the vibration of the middle ear ossicles with removed eardrum: a method for quantification of ossicular fixation.
Med Eng Phys. 2013 Dec;35(12):1786-92. doi: 10.1016/j.medengphy.2013.07.012. Epub 2013 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验