Suppr超能文献

人工智能中的探索性合成生物学:与生命和认知过程的合成模型相关的标准和分类法。

Explorative Synthetic Biology in AI: Criteria of Relevance and a Taxonomy for Synthetic Models of Living and Cognitive Processes.

机构信息

IULM University, Research Group on the Epistemology of the Sciences of the Artificial, Department of Communication, Arts, and Media.

University of Salento, Department of Biological and Environmental Sciences and Technologies.

出版信息

Artif Life. 2023 Aug 1;29(3):367-387. doi: 10.1162/artl_a_00411.

Abstract

This article tackles the topic of the special issue "Biology in AI: New Frontiers in Hardware, Software and Wetware Modeling of Cognition" in two ways. It addresses the problem of the relevance of hardware, software, and wetware models for the scientific understanding of biological cognition, and it clarifies the contributions that synthetic biology, construed as the synthetic exploration of cognition, can offer to artificial intelligence (AI). The research work proposed in this article is based on the idea that the relevance of hardware, software, and wetware models of biological and cognitive processes-that is, the concrete contribution that these models can make to the scientific understanding of life and cognition-is still unclear, mainly because of the lack of explicit criteria to assess in what ways synthetic models can support the experimental exploration of biological and cognitive phenomena. Our article draws on elements from cybernetic and autopoietic epistemology to define a framework of reference, for the synthetic study of life and cognition, capable of generating a set of assessment criteria and a classification of forms of relevance, for synthetic models, able to overcome the sterile, traditional polarization of their evaluation between mere imitation and full reproduction of the target processes. On the basis of these tools, we tentatively map the forms of relevance characterizing wetware models of living and cognitive processes that synthetic biology can produce and outline a programmatic direction for the development of "organizationally relevant approaches" applying synthetic biology techniques to the investigative field of (embodied) AI.

摘要

本文从两个方面探讨了本期特刊“人工智能中的生物学:认知的硬件、软件和湿件建模的新前沿”的主题。它解决了硬件、软件和湿件模型对于生物认知的科学理解的相关性问题,并阐明了合成生物学(被理解为认知的综合探索)可以为人工智能(AI)提供的贡献。本文提出的研究工作基于这样一种观点,即生物和认知过程的硬件、软件和湿件模型的相关性——也就是说,这些模型可以为生命和认知的科学理解做出的具体贡献——仍然不清楚,主要是因为缺乏明确的标准来评估合成模型可以在哪些方面支持对生物和认知现象的实验探索。我们的文章借鉴了控制论和自生认识论的元素,为生命和认知的综合研究定义了一个参考框架,该框架能够生成一组评估标准和合成模型相关性形式的分类,从而能够克服对目标过程的单纯模仿和完全复制之间的传统、僵化的二分法。在此基础上,我们初步绘制了合成生物学能够产生的活的和认知过程的湿件模型的相关性形式,并概述了将合成生物学技术应用于(具身)人工智能研究领域的“具有组织相关性的方法”的发展计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验