Suppr超能文献

不对称融合 4-氧代戊烯二酸盐互变异构酶的介绍。

Introduction of Asymmetry in the Fused 4-Oxalocrotonate Tautomerases.

出版信息

Biochemistry. 2023 Aug 15;62(16):2461-2471. doi: 10.1021/acs.biochem.3c00180. Epub 2023 Jul 25.

Abstract

Members of the 4-oxalocrotonate tautomerase (4-OT) subgroup in the tautomerase superfamily (TSF) are constructed from a single β-α-β unit and form homo- or heterohexamers, whereas those of the other four subgroups are composed of two consecutively joined β-α-β units and form trimers. A subset of sequences, double the length of the short 4-OTs, is found in the 4-OT subgroup. These "fused" 4-OTs form a separate subgroup that connects to the short 4-OTs in a sequence similarity network (SSN). The fused gene can be a template for the other four subgroups, resulting in the diversification of activity. Analysis of the SSN shows that multiple nodes in the fused 4-OTs connect to five linker nodes, which in turn connect to the short 4-OTs. Some fused 4-OTs are symmetric trimers and others are asymmetric trimers. The origin of this asymmetry was investigated by subjecting the sequences in three linker nodes and a closely associated fourth node to kinetic, mutagenic, and structural analyses. The results show that each sequence corresponds to the α- or β-subunit of a heterohexamer that functions as a 4-OT. Mutagenesis indicates that the key residues in both are αPro1 and βArg-11, like that of a typical 4-OT. Crystallographic analysis shows that both heterohexamers are asymmetric, where one heterodimer is flipped 180° relative to the other two heterodimers. The fusion of two subunits (α and β) of one asymmetric heterohexamer generates an asymmetric trimer with 4-OT activity. Hence, asymmetry can be introduced at the heterohexamer level and then retained in the fused trimers.

摘要

4-氧代戊烯二酸盐互变异构酶(4-OT)亚家族成员在互变异构酶超家族(TSF)中由单个β-α-β单元构成,形成同或异六聚体,而其他四个亚家族成员则由两个连续连接的β-α-β单元组成,形成三聚体。在 4-OT 亚家族中发现了一组长度是短 4-OT 的两倍的序列。这些“融合”的 4-OT 形成一个单独的亚家族,在序列相似性网络(SSN)中与短 4-OT 相连。融合基因可以作为其他四个亚家族的模板,导致活性多样化。SSN 的分析表明,融合 4-OT 中的多个节点连接到五个连接节点,这些连接节点又连接到短 4-OT。一些融合的 4-OT 是对称的三聚体,而另一些则是不对称的三聚体。通过对三个连接节点和一个密切相关的第四个节点中的序列进行动力学、诱变和结构分析,研究了这种不对称性的起源。结果表明,每个序列对应于作为 4-OT 起作用的异六聚体的α-或β-亚基。诱变表明,两个序列的关键残基都是αPro1 和βArg-11,与典型的 4-OT 相同。晶体学分析表明,两个异六聚体都是不对称的,其中一个异二聚体相对于另外两个异二聚体翻转了 180°。一个不对称异六聚体的两个亚基(α和β)的融合产生了具有 4-OT 活性的不对称三聚体。因此,不对称性可以在异六聚体水平上引入,然后在融合的三聚体中保留。

相似文献

1
Introduction of Asymmetry in the Fused 4-Oxalocrotonate Tautomerases.
Biochemistry. 2023 Aug 15;62(16):2461-2471. doi: 10.1021/acs.biochem.3c00180. Epub 2023 Jul 25.
2
Structural Basis for the Asymmetry of a 4-Oxalocrotonate Tautomerase Trimer.
Biochemistry. 2020 Apr 28;59(16):1592-1603. doi: 10.1021/acs.biochem.0c00211. Epub 2020 Apr 13.
3
Structural, Kinetic, and Mechanistic Analysis of an Asymmetric 4-Oxalocrotonate Tautomerase Trimer.
Biochemistry. 2019 Jun 4;58(22):2617-2627. doi: 10.1021/acs.biochem.9b00303. Epub 2019 May 23.
4
Kinetic and Structural Analysis of Two Linkers in the Tautomerase Superfamily: Analysis and Implications.
Biochemistry. 2021 Jun 8;60(22):1776-1786. doi: 10.1021/acs.biochem.1c00220. Epub 2021 May 21.
6
7
Symmetry of 4-Oxalocrotonate Tautomerase Trimers Influences Unfolding and Fragmentation in the Gas Phase.
J Am Chem Soc. 2022 Jul 13;144(27):12299-12309. doi: 10.1021/jacs.2c03564. Epub 2022 Jun 29.
8
Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C-C Bond-Forming Enzyme.
Angew Chem Int Ed Engl. 2022 Feb 14;61(8):e202113970. doi: 10.1002/anie.202113970. Epub 2021 Dec 27.
10
Identification and characterization of new family members in the tautomerase superfamily: analysis and implications.
Arch Biochem Biophys. 2014 Dec 15;564:189-96. doi: 10.1016/j.abb.2014.08.019. Epub 2014 Sep 16.

引用本文的文献

1
From duplication to fusion: Expanding Dayhoff's model of protein evolution.
Protein Sci. 2025 Mar;34(3):e70054. doi: 10.1002/pro.70054.

本文引用的文献

1
A mutagenic analysis of NahE, a hydratase-aldolase in the naphthalene degradative pathway.
Arch Biochem Biophys. 2023 Jan 1;733:109471. doi: 10.1016/j.abb.2022.109471. Epub 2022 Nov 26.
2
Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C-C Bond-Forming Enzyme.
Angew Chem Int Ed Engl. 2022 Feb 14;61(8):e202113970. doi: 10.1002/anie.202113970. Epub 2021 Dec 27.
3
Structural Basis for the Asymmetry of a 4-Oxalocrotonate Tautomerase Trimer.
Biochemistry. 2020 Apr 28;59(16):1592-1603. doi: 10.1021/acs.biochem.0c00211. Epub 2020 Apr 13.
5
Structural, Kinetic, and Mechanistic Analysis of an Asymmetric 4-Oxalocrotonate Tautomerase Trimer.
Biochemistry. 2019 Jun 4;58(22):2617-2627. doi: 10.1021/acs.biochem.9b00303. Epub 2019 May 23.
6
A global view of structure-function relationships in the tautomerase superfamily.
J Biol Chem. 2018 Feb 16;293(7):2342-2357. doi: 10.1074/jbc.M117.815340. Epub 2017 Nov 28.
8
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验