Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Nano Lett. 2023 Oct 11;23(19):9160-9169. doi: 10.1021/acs.nanolett.3c01757. Epub 2023 Jul 26.
Nanosubstrate engineering can be a biomechanical approach for modulating stem cell differentiation in tissue engineering. However, the study of the effect of clathrin-mediated processes on manipulating this behavior is unexplored. Herein, we develop integrin-binding nanosubstrates with confined nanogeometries that regulate clathrin-mediated adhesion- or endocytosis-active signaling pathways for modulating stem fates. Isotropically presenting ligands on the nanoscale enhances the expression of clathrin in cells, thereby facilitating uptake of dexamethasone-loaded nanoparticles (NPs) to boost osteogenesis of stem cells. In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling, which can be abrogated by the pharmacological inhibition of clathrin. Meanwhile, inhibiting focal adhesion formation hinders cell spreading and enables a higher endocytosis efficiency. Our findings reveal the crucial roles of clathrin in both endocytosis and mechanotransduction of stem cells and provide the parameter of ligand nanogeometry for the rational design of biomaterials for tissue engineering.
纳米基底工程可以作为一种生物力学方法,用于调节组织工程中的干细胞分化。然而,对于操纵这种行为的网格蛋白介导过程的研究还尚未探索。在此,我们开发了具有受限纳米结构的整合素结合纳米基底,以调节网格蛋白介导的黏附和胞吞活性信号通路,从而调控干细胞命运。在纳米尺度上各向同性地呈现配体可以增强细胞中网格蛋白的表达,从而促进载有地塞米松的纳米颗粒(NPs)的摄取,以促进干细胞的成骨作用。相比之下,各向异性的配体纳米结构通过增强网格蛋白与黏附斑之间的关联来抑制这种网格蛋白介导的 NP 进入,从而增强机械转导信号,而网格蛋白的药理学抑制可以消除这种信号。同时,抑制黏附斑的形成会阻碍细胞的铺展,并提高内吞效率。我们的研究结果揭示了网格蛋白在干细胞的胞吞作用和力学转导中的关键作用,并为组织工程中生物材料的合理设计提供了配体纳米结构的参数。