Yoshida Luna, Matsui Yukiko, Deguchi Minako, Hakari Takashi, Watanabe Masayoshi, Ishikawa Masashi
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Japan.
Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-Cho, Suita 564-8680, Japan.
ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37467-37476. doi: 10.1021/acsami.3c06624. Epub 2023 Jul 26.
High-concentration lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane (LiFSI/DME) electrolytes are promising candidates for highly reversible lithium-metal anodes. However, the performance of lithium-sulfur (Li-S) batteries with a high concentration of LiFSI/DME declines because LiFSI reacts irreversibly with lithium polysulfide, which is formed during the charge-discharge process of Li-S batteries. Hence, to apply high-concentration LiFSI/DME to Li-S batteries, we investigated carbon with an appropriate pore size for use in a sulfur composite cathode and optimized the composition of high-concentration LiFSI/DME. The results showed that the combination of carbon with mesopores of 2-3 nm diameter and 3 M LiFSI in DME/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (HFE) (1:1 by vol.) provided a high-rate capability (943 mA h g at a rate of 2 C). Moreover, the ratio of the 50th discharge capacity to the 2nd discharge capacity (capacity retention) improved from 50.0 to 61.6% with HFE dilution of high-concentration LiFSI/DME. The improved performance was achieved by suppressing the dissolution of lithium polysulfide, decreasing the viscosity of the electrolyte, and forming a thin solid electrolyte interface on the lithium-metal anode due to HFE dilution.
高浓度双(氟磺酰)亚胺锂/1,2 - 二甲氧基乙烷(LiFSI/DME)电解质是高可逆锂金属负极的有前景的候选材料。然而,具有高浓度LiFSI/DME的锂硫(Li-S)电池性能会下降,因为LiFSI与锂多硫化物发生不可逆反应,锂多硫化物是在Li-S电池充放电过程中形成的。因此,为了将高浓度LiFSI/DME应用于Li-S电池,我们研究了具有合适孔径的碳用于硫复合正极,并优化了高浓度LiFSI/DME的组成。结果表明,直径为2 - 3 nm的中孔碳与3 M LiFSI在DME/1,1,2,2 - 四氟乙基2,2,3,3 - 四氟丙醚(HFE)(体积比1:1)中的组合提供了高倍率性能(在2 C倍率下为943 mA h g)。此外,随着高浓度LiFSI/DME用HFE稀释,第50次放电容量与第2次放电容量的比值(容量保持率)从50.0%提高到了61.6%。性能的改善是通过抑制锂多硫化物的溶解、降低电解质的粘度以及由于HFE稀释在锂金属负极上形成薄的固体电解质界面实现的。