Yang Yunhui, Fernández-Seriñán Pilar, Imaz Inhar, Gándara Felipe, Handke Marcel, Ortín-Rubio Borja, Juanhuix Judith, Maspoch Daniel
CSIC, and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain.
Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
J Am Chem Soc. 2023 Aug 9;145(31):17398-17405. doi: 10.1021/jacs.3c05469. Epub 2023 Jul 26.
Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers. Next, we selectively and quantitatively broke their cleavable linkers, demonstrating that various dynamic chemical and structural processes occur within these structures to drive the formation of isoreticular contracted MOFs. Thus, the contraction involves breaking of a covalent bond, subsequent breaking of a coordination bond, and finally, formation of a new coordination bond supported by structural behavior. Remarkably, given that the single-crystal character of the parent MOF is retained throughout the entire transformation, we were able to monitor the contraction by single-crystal X-ray diffraction.
同网化学是合成新型多孔分子材料以及对其孔隙进行调控或功能化的关键概念,在同网化学中,网状材料的有机或无机部分可以被取代而不破坏其 underlying 网络。在此,我们报道金属有机框架(MOF)中共价键的合理断裂可以引发其同网收缩,而无需任何额外的有机连接体。我们首先基于MIL-142家族合成了两种新型MOF,即(In)BCN-20B和(Sc)BCN-20C,它们包含可裂解以及不可裂解的有机连接体。接下来,我们选择性地、定量地断裂它们的可裂解连接体,证明在这些结构中发生了各种动态化学和结构过程以驱动同网收缩MOF的形成。因此,收缩涉及共价键的断裂、随后配位键的断裂,最后,由结构行为支持形成新的配位键。值得注意的是,鉴于在整个转变过程中母体MOF的单晶特性得以保留,我们能够通过单晶X射线衍射监测收缩过程。