文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用脂质纳米颗粒和细胞衍生纳米囊泡进行靶向基因递送的策略。

Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles.

作者信息

Lee Dong-Yup, Amirthalingam Sivashanmugam, Lee Changyub, Rajendran Arun Kumar, Ahn Young-Hyun, Hwang Nathaniel S

机构信息

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea

Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea.

出版信息

Nanoscale Adv. 2023 Jul 7;5(15):3834-3856. doi: 10.1039/d3na00198a. eCollection 2023 Jul 25.


DOI:10.1039/d3na00198a
PMID:37496613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10368001/
Abstract

Gene therapy is a promising approach for the treatment of many diseases. However, the effective delivery of the cargo without degradation is one of the major hurdles. With the advent of lipid nanoparticles (LNPs) and cell-derived nanovesicles (CDNs), gene delivery holds a very promising future. The targeting of these nanosystems is a prerequisite for effective transfection with minimal side-effects. In this review, we highlight the emerging strategies utilized for the effective targeting of LNPs and CDNs, and we summarize the preparation methodologies for LNPs and CDNs. We have also highlighted the non-ligand targeting of LNPs toward certain organs based on their composition. It is highly expected that continuing the developments in the targeting approaches of LNPs and CDNs for the delivery system will further promote them in clinical translation.

摘要

基因治疗是治疗多种疾病的一种很有前景的方法。然而,在不发生降解的情况下有效递送载荷是主要障碍之一。随着脂质纳米颗粒(LNPs)和细胞衍生纳米囊泡(CDNs)的出现,基因递送有着非常光明的前景。这些纳米系统的靶向性是实现有效转染且副作用最小的先决条件。在这篇综述中,我们重点介绍了用于有效靶向LNPs和CDNs的新兴策略,并总结了LNPs和CDNs的制备方法。我们还强调了基于LNPs的组成对某些器官的非配体靶向作用。人们高度期望,继续推进LNPs和CDNs递送系统靶向方法的发展将进一步推动它们在临床转化中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/c6c5a93714e8/d3na00198a-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/f50c374c342d/d3na00198a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/4848a24ca541/d3na00198a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/bc3ace750b69/d3na00198a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/70edeac6425c/d3na00198a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/88f5ff4f2db8/d3na00198a-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/0f7a87fb5bcc/d3na00198a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/c6c5a93714e8/d3na00198a-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/f50c374c342d/d3na00198a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/4848a24ca541/d3na00198a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/bc3ace750b69/d3na00198a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/70edeac6425c/d3na00198a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/88f5ff4f2db8/d3na00198a-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/0f7a87fb5bcc/d3na00198a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/10368001/c6c5a93714e8/d3na00198a-p3.jpg

相似文献

[1]
Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles.

Nanoscale Adv. 2023-7-7

[2]
Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery.

Biomed Pharmacother. 2022-1

[3]
Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy.

Pharmaceutics. 2022-10-7

[4]
Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid.

Adv Mater. 2024-1

[5]
M1-polarized macrophage-derived cellular nanovesicle-coated lipid nanoparticles for enhanced cancer treatment through hybridization of gene therapy and cancer immunotherapy.

Acta Pharm Sin B. 2024-7

[6]
Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy.

Int J Nanomedicine. 2017-4-4

[7]
Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing.

Heliyon. 2024-1-11

[8]
Micro-syringe chip-guided intratumoral administration of lipid nanoparticles for targeted anticancer therapy.

Biomater Res. 2023-10-16

[9]
A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials.

J Liposome Res. 2024-3

[10]
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.

Acc Chem Res. 2021-11-2

引用本文的文献

[1]
Membrane-modified lipid nanoparticles for RNA delivery.

Mol Ther Methods Clin Dev. 2025-6-9

[2]
Ionizable lipid nanoparticles with functionalized PEG-lipids increase retention in the tumor microenvironment.

Mol Ther Methods Clin Dev. 2025-3-27

[3]
Nucleic Acid Conjugates: Unlocking Therapeutic Potential.

ACS Bio Med Chem Au. 2024-12-18

[4]
Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms.

Int J Mol Sci. 2024-12-18

[5]
Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach.

J Nanobiotechnology. 2024-11-14

[6]
Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics.

Front Pharmacol. 2024-10-23

[7]
Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics.

J Extracell Biol. 2024-10-30

[8]
Furan-rich, biobased transfection agents as potential oligomeric candidates for intracellular plasmid DNA delivery.

RSC Adv. 2024-10-15

[9]
Optimized strategies for precise messenger RNA delivery using site-specific lipid nanoparticle-based drug delivery systems.

Nanomedicine (Lond). 2025-1

[10]
Towards a 'clicked' PSMA targeting gene delivery bioconjugate-polyplex for prostate cancer.

RSC Adv. 2024-7-29

本文引用的文献

[1]
Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation.

Front Chem. 2023-5-9

[2]
Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles.

Biosensors (Basel). 2023-4-13

[3]
Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications.

Molecules. 2023-4-26

[4]
Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles.

Extracell Vesicle. 2022-12

[5]
A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications.

Expert Opin Drug Discov. 2023-2

[6]
CRISPR-Cas9-mediated gene therapy in lung cancer.

Clin Transl Oncol. 2023-5

[7]
Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics.

ACS Nano. 2022-11-22

[8]
Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery.

Nat Protoc. 2023-1

[9]
Biomimetic Nanovesicles-Sources, Design, Production Methods, and Applications.

Pharmaceutics. 2022-9-22

[10]
Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering.

Mol Ther. 2023-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索