Department of Ecological Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany.
J Biomed Mater Res B Appl Biomater. 2023 Dec;111(12):2044-2054. doi: 10.1002/jbm.b.35304. Epub 2023 Jul 27.
The variety of polymers utilized in medical devices demands for testing of extractables and leachables according to ISO 10993-18:2020 in combination with ISO 10993-1:2018. The extraction of the materials involves the use of organic solvents as well as aqueous buffers to cover a wide range of polarity and pH-values, respectively. To estimate patient exposure to chemicals leaching from a polymer in direct body contact, simulating solvents are applied to best mimic the solubilization and partitioning behavior of the related tissue or body fluid. Here we apply linear solvation energy relationship (LSER) models to predict blood/water and adipose tissue/water partition coefficients. We suggest this predictive approach to project levels of potential leachables, design extraction experiments, and to identify the optimal composition of simulating extraction solvents. We compare our predictions to LSER predictions for commonly applied surrogates like ethanol/water mixtures, butanol, and octanol as well as olive oil, butanone, 1,4-dioxane for blood and adipose tissue, respectively. We therefore selected a set of 26 experimentally determined blood/water partition coefficients and 33 adipose tissue/water partition coefficients, where we demonstrate that based on the root mean squared error rmse the LSER approach performs better than surrogates like octanol or butanol and equally well as 60:40 ethanol/water for blood. For adipose tissue/water partitioning, the experimentally determined octanol/water partition coefficient performs best but the rmse is at the same range as our LSER approach based on experimentally determined descriptors. Further, we applied our approach for 248 extractables where we calculated blood/low density polyethylene (LDPE) and adipose tissue/LDPE partition coefficients. By this approach, we successfully identified chemicals of potential interest to a toxicological evaluation based on the total risk score.
医疗器械中使用的聚合物种类繁多,根据 ISO 10993-18:2020 结合 ISO 10993-1:2018 标准,需要对提取物质和浸出物进行测试。材料的提取涉及使用有机溶剂和水性缓冲液,分别覆盖广泛的极性和 pH 值范围。为了估计与聚合物直接接触的患者接触到的化学物质浸出量,模拟溶剂用于最佳模拟相关组织或体液的溶解和分配行为。在这里,我们应用线性溶剂化能关系 (LSER) 模型来预测血液/水和脂肪组织/水分配系数。我们建议采用这种预测方法来预测潜在浸出物的水平,设计提取实验,并确定模拟提取溶剂的最佳组成。我们将我们的预测与常用于替代物的 LSER 预测进行比较,如乙醇/水混合物、正丁醇和辛醇以及橄榄油、丁酮、1,4-二恶烷分别用于血液和脂肪组织。因此,我们选择了一组 26 个实验确定的血液/水分配系数和 33 个脂肪组织/水分配系数,其中我们证明基于均方根误差 (rmse),LSER 方法的性能优于替代物,如辛醇或正丁醇,并且与 60:40 乙醇/水在血液中一样好。对于脂肪组织/水分配,实验确定的辛醇/水分配系数表现最佳,但与我们基于实验确定描述符的 LSER 方法的 rmse 处于相同范围内。此外,我们将我们的方法应用于 248 种提取物,其中我们计算了血液/低密度聚乙烯 (LDPE) 和脂肪组织/LDPE 分配系数。通过这种方法,我们成功地根据总风险评分确定了对毒理学评估有潜在兴趣的化学品。