Yu Bingchen, Cao Li, Li Shanshan, Klauser Paul C, Wang Lei
Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
Chem Sci. 2023 Jun 20;14(29):7913-7921. doi: 10.1039/d3sc01921g. eCollection 2023 Jul 26.
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and , which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
邻近诱导的硫(VI)氟交换(SuFEx)反应在细胞中的蛋白质之间产生特定的共价键,这为研究难以捉摸的蛋白质-蛋白质相互作用和开发有效的共价蛋白质药物开辟了创新途径。为了利用共价蛋白质的力量并扩大其应用,蛋白质之间共价键的形成是关键步骤,但其基本动力学和本质特性仍未得到探索。在此,我们系统地研究了不同蛋白质和条件下的SuFEx动力学。与小分子中的情况不同,相互作用蛋白质中的SuFEx符合两步机制,包括非共价结合,随后是共价键形成,表现出对蛋白质浓度的非线性速率依赖性。蛋白质SuFEx速率随蛋白质结合亲和力以及官能团的化学反应性而持续变化,并受目标残基身份和溶液pH值的影响。此外,纳米抗体SR4与SARS-CoV-2刺突蛋白结合的动力学分析表明,病毒靶点突变并未消除共价结合,但随着亲和力降低,SuFEx速率下降。此外,未检测到具有SuFEx能力的纳米抗体在人血清中的脱靶交联,并且SuFEx产生的蛋白质连接在细胞酸性pH值下是稳定的,这表明SuFEx适用于相关用途。这些结果增进了我们对蛋白质中SuFEx反应性和动力学的理解,这对于正在进行的利用SuFEx的共价蛋白质用于基础生物学研究和创新生物治疗的探索具有不可估量的价值。