Suppr超能文献

非线性流形是行为过程中神经群体活动的基础。

Nonlinear manifolds underlie neural population activity during behaviour.

作者信息

Fortunato Cátia, Bennasar-Vázquez Jorge, Park Junchol, Chang Joanna C, Miller Lee E, Dudman Joshua T, Perich Matthew G, Gallego Juan A

机构信息

Department of Bioengineering, Imperial College London, London UK.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA.

出版信息

bioRxiv. 2024 Apr 25:2023.07.18.549575. doi: 10.1101/2023.07.18.549575.

Abstract

There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.

摘要

在行为过程中记录到的单个神经元活动具有丰富的多样性。然而,这些多样的单个神经元反应可以通过相对较少的神经共调制模式得到很好的描述。对神经群体活动这种低维结构的研究为大脑如何产生行为提供了重要的见解。几乎所有这些研究都使用线性降维技术来估计这些全群体的共调制模式,将它们限制在一个平坦的“神经流形”上。在这里,我们假设,由于神经元具有非线性反应,并且形成了数千个分布式和循环连接,这些连接可能会放大这种非线性,所以神经流形应该本质上是非线性的。结合来自猴子、小鼠和人类运动皮层以及小鼠纹状体的神经群体记录,我们发现:1)神经流形本质上是非线性的;2)在需要更多样化活动模式的复杂任务中,它们的非线性变得更加明显;3)流形非线性在结构不同的脑区之间存在差异。使用循环神经网络模型进行的模拟证实了所提出的电路连接性与流形非线性之间的关系,包括结构不同区域之间的差异。因此,行为产生背后的神经流形本质上是非线性的,随着神经科学家转向研究参与日益复杂和自然行为的众多脑区,正确考虑这种非线性将至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验