Suppr超能文献

血脑屏障通透性指标统计分析中的色谱数据

Chromatographic Data in Statistical Analysis of BBB Permeability Indices.

作者信息

Wanat Karolina, Brzezińska Elżbieta

机构信息

Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland.

出版信息

Membranes (Basel). 2023 Jun 26;13(7):623. doi: 10.3390/membranes13070623.

Abstract

Blood-brain barrier (BBB) permeability is an essential phenomena when considering the treatment of neurological disorders as well as in the case of central nervous system (CNS) adverse effects caused by peripherally acting drugs. The presented work contains statistical analyses and the correlation assessment of the analyzed group of active pharmaceutical ingredients (APIs) with their BBB-permeability data collected from the literature (such as computational log BB; Kp,uu,brain, and CNS+/- groups). A number of regression models were constructed in order to observe the connections between the APIs' physicochemical properties in combination with their retention data from the chromatographic experiments (TLC and HPLC) and the indices of bioavailability in the CNS. Conducted analyses confirm that descriptors significant in BBB permeability modeling are hydrogen bond acceptors and donors, physiological charge, or energy of the lowest unoccupied molecular orbital. These molecular descriptors were the basis, along with the chromatographic data from the TLC in log BB regression analyses. Normal-phase TLC data showed a significant contribution to the creation of the log BB regression model using the multiple linear regression method. The model using them showed a good predictive value at the level of R = 0.87. Models for Kp,uu,brain resulted in lower statistics: R = 0.56 for the group of 23 APIs with the participation of k IAM.

摘要

血脑屏障(BBB)通透性在考虑神经系统疾病的治疗以及外周作用药物引起的中枢神经系统(CNS)不良反应时是一个重要现象。本文工作包含对一组活性药物成分(API)的统计分析及其与从文献中收集的血脑屏障通透性数据(如计算log BB;Kp,uu,brain和CNS+/-组)的相关性评估。构建了多个回归模型,以观察API的物理化学性质与其色谱实验(TLC和HPLC)的保留数据以及中枢神经系统生物利用度指标之间的联系。进行的分析证实,在血脑屏障通透性建模中显著的描述符是氢键受体和供体、生理电荷或最低未占分子轨道的能量。这些分子描述符连同log BB回归分析中TLC的色谱数据一起作为基础。正相TLC数据在使用多元线性回归方法创建log BB回归模型时显示出显著贡献。使用它们的模型在R = 0.87水平显示出良好的预测价值。Kp,uu,brain模型的统计结果较低:对于23种API且有k IAM参与的组,R = 0.56。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11e4/10384010/1e21c528bb34/membranes-13-00623-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验