Suppr超能文献

基于人工神经网络(ANNs)的膜污染预测综述

A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs).

作者信息

Abuwatfa Waad H, AlSawaftah Nour, Darwish Naif, Pitt William G, Husseini Ghaleb A

机构信息

Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

出版信息

Membranes (Basel). 2023 Jul 24;13(7):685. doi: 10.3390/membranes13070685.

Abstract

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.

摘要

膜污染是微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等有效压力驱动膜过程的主要障碍。污染是指颗粒、有机和无机物质以及微生物细胞在膜的内外表面堆积,这会降低渗透通量并增加所需的跨膜压力。多种因素会影响膜污染,包括进水水质、膜特性、操作条件和清洗方案。已经开发了几种模型来预测压力驱动过程中的膜污染。这些模型可分为传统经验模型、机理模型和基于人工智能(AI)的模型。人工神经网络(ANN)是非线性映射和预测的强大工具,它们可以捕捉输入和输出变量之间的复杂关系。在膜污染预测中,可以使用历史数据训练ANN,以根据过程参数预测污染速率或其他与污染相关的参数。本综述阐述了有关使用ANN进行膜污染预测的相关文献。具体而言,与其他专注于数学模型或广泛基于AI的模拟的现有综述形成补充,本综述聚焦于基于AI的污染预测模型,即人工神经网络(ANN)及其衍生模型,以更深入地了解此类膜污染预测模型的优势、劣势、潜力和改进领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1061/10383311/b1dab2be58b7/membranes-13-00685-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验