Suppr超能文献

有效物候学研究的十大最佳实践。

Ten best practices for effective phenological research.

机构信息

Department of Biology, Boston University, Boston, MA, USA.

Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

出版信息

Int J Biometeorol. 2023 Oct;67(10):1509-1522. doi: 10.1007/s00484-023-02502-7. Epub 2023 Jul 29.

Abstract

The number and diversity of phenological studies has increased rapidly in recent years. Innovative experiments, field studies, citizen science projects, and analyses of newly available historical data are contributing insights that advance our understanding of ecological and evolutionary responses to the environment, particularly climate change. However, many phenological data sets have peculiarities that are not immediately obvious and can lead to mistakes in analyses and interpretation of results. This paper aims to help researchers, especially those new to the field of phenology, understand challenges and practices that are crucial for effective studies. For example, researchers may fail to account for sampling biases in phenological data, struggle to choose or design a volunteer data collection strategy that adequately fits their project's needs, or combine data sets in inappropriate ways. We describe ten best practices for designing studies of plant and animal phenology, evaluating data quality, and analyzing data. Practices include accounting for common biases in data, using effective citizen or community science methods, and employing appropriate data when investigating phenological mismatches. We present these best practices to help researchers entering the field take full advantage of the wealth of available data and approaches to advance our understanding of phenology and its implications for ecology.

摘要

近年来,物候学研究的数量和多样性迅速增加。创新性实验、实地研究、公民科学项目以及对新获得的历史数据的分析,都为我们深入了解生态和进化对环境的响应提供了新的认识,尤其是气候变化。然而,许多物候数据集都有一些不那么明显的特点,如果在分析和解释结果时处理不当,可能会导致错误。本文旨在帮助研究人员,特别是那些刚接触物候学领域的人,了解对有效研究至关重要的挑战和实践。例如,研究人员可能没有考虑到物候数据中的抽样偏差,难以选择或设计出适合项目需求的志愿者数据收集策略,或者以不恰当的方式组合数据集。我们描述了设计植物和动物物候学研究、评估数据质量和分析数据的十大最佳实践。这些实践包括考虑数据中的常见偏差、使用有效的公民或社区科学方法,以及在调查物候不匹配时使用适当的数据。我们提出这些最佳实践,是为了帮助进入该领域的研究人员充分利用丰富的现有数据和方法,推进我们对物候学及其对生态学影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d03/10457241/66c09de3535b/484_2023_2502_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验