文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于条件性损伤后轴突再生的分子机制发现脊髓损伤的治疗靶点。

Discovery of therapeutic targets for spinal cord injury based on molecular mechanisms of axon regeneration after conditioning lesion.

机构信息

Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.

Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.

出版信息

J Transl Med. 2023 Jul 28;21(1):511. doi: 10.1186/s12967-023-04375-1.


DOI:10.1186/s12967-023-04375-1
PMID:37507810
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10385911/
Abstract

BACKGROUND: Preinjury of peripheral nerves triggers dorsal root ganglia (DRG) axon regeneration, a biological change that is more pronounced in young mice than in old mice, but the complex mechanism has not been clearly explained. Here, we aim to gain insight into the mechanisms of axon regeneration after conditioning lesion in different age groups of mice, thereby providing effective therapeutic targets for central nervous system (CNS) injury. METHODS: The microarray GSE58982 and GSE96051 were downloaded and analyzed to identify differentially expressed genes (DEGs). The protein-protein interaction (PPI) network, the miRNA-TF-target gene network, and the drug-hub gene network of conditioning lesion were constructed. The L4 and L5 DRGs, which were previously axotomized by the sciatic nerve conditioning lesions, were harvested for qRT-PCR. Furthermore, histological and behavioral tests were performed to assess the therapeutic effects of the candidate drug telmisartan in spinal cord injury (SCI). RESULTS: A total of 693 and 885 DEGs were screened in the old and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in the inflammatory response, innate immune response, and ion transport. QRT-PCR results showed that in DRGs with preinjury of peripheral nerve, Timp1, P2ry6, Nckap1l, Csf1, Ccl9, Anxa1, and C3 were upregulated, while Agtr1a was downregulated. Based on the bioinformatics analysis of DRG after conditioning lesion, Agtr1a was selected as a potential therapeutic target for the SCI treatment. In vivo experiments showed that telmisartan promoted axonal regeneration after SCI by downregulating AGTR1 expression. CONCLUSION: This study provides a comprehensive map of transcriptional changes that discriminate between young and old DRGs in response to injury. The hub genes and their related drugs that may affect the axonal regeneration program after conditioning lesion were identified. These findings revealed the speculative pathogenic mechanism involved in conditioning-dependent regenerative growth and may have translational significance for the development of CNS injury treatment in the future.

摘要

背景:外周神经损伤会引发背根神经节(DRG)轴突再生,这种生物学变化在年轻小鼠中比在老年小鼠中更为明显,但复杂的机制尚未得到明确解释。在这里,我们旨在深入了解不同年龄组小鼠在条件性损伤后轴突再生的机制,从而为中枢神经系统(CNS)损伤提供有效的治疗靶点。

方法:下载并分析 microarray GSE58982 和 GSE96051 以鉴定差异表达基因(DEGs)。构建条件性损伤的蛋白质-蛋白质相互作用(PPI)网络、miRNA-TF-靶基因网络和药物-关键基因网络。以前通过坐骨神经条件性损伤切断 L4 和 L5 DRG 神经,用于 qRT-PCR。此外,进行组织学和行为学测试以评估候选药物替米沙坦在脊髓损伤(SCI)中的治疗效果。

结果:在老年和年轻小鼠中分别筛选出 693 和 885 个 DEGs。功能富集表明,共享 DEGs 参与炎症反应、固有免疫反应和离子转运。qRT-PCR 结果显示,在有周围神经预先损伤的 DRG 中,Timp1、P2ry6、Nckap1l、Csf1、Ccl9、Anxa1 和 C3 上调,而 Agtr1a 下调。基于 DRG 条件性损伤后的生物信息学分析,选择 Agtr1a 作为 SCI 治疗的潜在治疗靶点。体内实验表明,替米沙坦通过下调 AGTR1 表达促进 SCI 后轴突再生。

结论:本研究提供了一个全面的转录变化图谱,可区分年轻和老年 DRG 对损伤的反应。确定了可能影响条件性损伤后轴突再生程序的关键基因及其相关药物。这些发现揭示了与条件依赖性再生性生长相关的推测发病机制,可能对未来 CNS 损伤治疗的发展具有转化意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/58c62164c589/12967_2023_4375_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/f3453fc5230e/12967_2023_4375_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/b663f8460ecc/12967_2023_4375_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/efdfee78e112/12967_2023_4375_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/0debc17080cb/12967_2023_4375_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/33cb3abec888/12967_2023_4375_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/1063ee1b27e3/12967_2023_4375_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/58c62164c589/12967_2023_4375_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/f3453fc5230e/12967_2023_4375_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/b663f8460ecc/12967_2023_4375_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/efdfee78e112/12967_2023_4375_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/0debc17080cb/12967_2023_4375_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/33cb3abec888/12967_2023_4375_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/1063ee1b27e3/12967_2023_4375_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0628/10385911/58c62164c589/12967_2023_4375_Fig7_HTML.jpg

相似文献

[1]
Discovery of therapeutic targets for spinal cord injury based on molecular mechanisms of axon regeneration after conditioning lesion.

J Transl Med. 2023-7-28

[2]
miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.

J Neurosci. 2016-8-10

[3]
Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice.

J Neurosci. 2004-5-5

[4]
Genetic study of axon regeneration with cultured adult dorsal root ganglion neurons.

J Vis Exp. 2012-8-17

[5]
Identification of Key Genes and Pathways Involved in the Heterogeneity of Intrinsic Growth Ability Between Neurons After Spinal Cord Injury in Adult Zebrafish.

Neurochem Res. 2019-7-19

[6]
Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.

J Neurosci. 2015-7-22

[7]
Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.

J Neurosci. 2017-12-26

[8]
Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons.

BMC Genomics. 2020-8-5

[9]
c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy.

Exp Neurol. 1997-11

[10]
Dorsal root ganglion axons facilitate and guide cortical neural outgrowth: In vitro modeling of spinal cord injury axonal regeneration.

Restor Neurol Neurosci. 2020

引用本文的文献

[1]
Spinal cord injury and inflammatory mediators: Role in "fire barrier" formation and potential for neural regeneration.

Neural Regen Res. 2026-3-1

[2]
HIF-1α Induced by Hypoxia Promotes Peripheral Nerve Injury Recovery Through Regulating Ferroptosis in DRG Neuron.

Mol Neurobiol. 2024-9

本文引用的文献

[1]
Quantitative Proteomic Analysis of Mouse Sciatic Nerve Reveals Post-injury Upregulation of ADP-Dependent Glucokinase Promoting Macrophage Phagocytosis.

Front Mol Neurosci. 2021-11-12

[2]
Microglia Depletion-Induced Remodeling of Extracellular Matrix and Excitatory Synapses in the Hippocampus of Adult Mice.

Cells. 2021-7-22

[3]
Angiotensin II receptor type 1 - An update on structure, expression and pathology.

Biochem Pharmacol. 2021-10

[4]
Immune Profiling of Parkinson's Disease Revealed Its Association With a Subset of Infiltrating Cells and Signature Genes.

Front Aging Neurosci. 2021-2-9

[5]
Evaluation of Functional Recovery in Rats After Median Nerve Resection and Autograft Repair Using Computerized Gait Analysis.

Front Neurosci. 2021-1-21

[6]
Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling.

Nat Commun. 2020-12-21

[7]
Role of Proto-Oncogene as a Transcriptional Hub to Regulate the Expression of Regeneration-Associated Genes following Preconditioning Peripheral Nerve Injury.

J Neurosci. 2021-1-20

[8]
MicroRNA regulatory pattern in spinal cord ischemia-reperfusion injury.

Neural Regen Res. 2020-11

[9]
The inhibition of miR-17-5p promotes cortical neuron neurite growth via STAT3/GAP-43 pathway.

Mol Biol Rep. 2020-2-24

[10]
Alteration in global DNA methylation status following preconditioning injury influences axon growth competence of the sensory neurons.

Exp Neurol. 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索