Grovola Michael R, Jinich Alan, Paleologos Nicholas, Arroyo Edgardo J, Browne Kevin D, Swanson Randel L, Duda John E, Cullen D Kacy
Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA.
Biomedicines. 2023 Jul 12;11(7):1960. doi: 10.3390/biomedicines11071960.
Traumatic brain injury (TBI) is a major contributor to morbidity and mortality in the United States as several million people visit the emergency department every year due to TBI exposures. Unfortunately, there is still no consensus on the pathology underlying mild TBI, the most common severity sub-type of TBI. Previous preclinical and post-mortem human studies have detailed the presence of diffuse axonal injury following TBI, suggesting that white matter pathology is the predominant pathology of diffuse brain injury. However, the inertial loading produced by TBI results in strain fields in both gray and white matter. In order to further characterize gray matter pathology in mild TBI, our lab used a pig model (n = 25) of closed-head rotational acceleration-induced TBI to evaluate blood-brain barrier disruptions, neurodegeneration, astrogliosis, and microglial reactivity in the cerebral cortex out to 1 year post-injury. Immunohistochemical staining revealed the presence of a hyper-ramified microglial phenotype-more branches, junctions, endpoints, and longer summed process length-at 30 days post injury (DPI) out to 1 year post injury in the cingulate gyrus ( < 0.05), and at acute and subacute timepoints in the inferior temporal gyrus ( < 0.05). Interestingly, we did not find neuronal loss or astroglial reactivity paired with these chronic microglia changes. However, we observed an increase in fibrinogen reactivity-a measure of blood-brain barrier disruption-predominately in the gray matter at 3 DPI ( = 0.0003) which resolved to sham levels by 7 DPI out to chronic timepoints. Future studies should employ gene expression assays, neuroimaging, and behavioral assays to elucidate the effects of these hyper-ramified microglia, particularly related to neuroplasticity and responses to potential subsequent insults. Further understanding of the brain's inflammatory activity after mild TBI will hopefully provide understanding of pathophysiology that translates to clinical treatment for TBI.
创伤性脑损伤(TBI)是美国发病和死亡的主要原因,每年有数百万人因TBI暴露而前往急诊科就诊。不幸的是,对于轻度TBI(TBI最常见的严重程度亚型)的潜在病理机制仍未达成共识。先前的临床前和死后人体研究详细描述了TBI后弥漫性轴索损伤的存在,这表明白质病理是弥漫性脑损伤的主要病理。然而,TBI产生的惯性负荷会导致灰质和白质中的应变场。为了进一步表征轻度TBI中的灰质病理,我们实验室使用了闭合性头部旋转加速诱导的TBI猪模型(n = 25),以评估损伤后1年内大脑皮质中的血脑屏障破坏、神经退行性变、星形胶质细胞增生和小胶质细胞反应性。免疫组织化学染色显示,在扣带回中,损伤后30天(DPI)至损伤后1年出现了高度分支的小胶质细胞表型——更多的分支、连接点、端点和更长的总突起长度(<0.05),在颞下回的急性和亚急性时间点也出现了这种情况(<0.05)。有趣的是,我们没有发现与这些慢性小胶质细胞变化相关的神经元丢失或星形胶质细胞反应性。然而,我们观察到纤维蛋白原反应性增加——血脑屏障破坏的一个指标——主要在3 DPI时出现在灰质中(= 0.0003),到7 DPI时恢复到假手术水平并持续到慢性时间点。未来的研究应采用基因表达分析、神经影像学和行为分析来阐明这些高度分支的小胶质细胞的作用,特别是与神经可塑性和对潜在后续损伤的反应相关的作用。对轻度TBI后大脑炎症活动的进一步了解有望为TBI的临床治疗提供病理生理学方面的认识。