Suppr超能文献

基于自适应神经模糊的模型用于预测生物医学应用中3D打印聚乳酸绿色复合材料的摩擦学性能

Adaptive Neuro-Fuzzy-Based Models for Predicting the Tribological Properties of 3D-Printed PLA Green Composites Used for Biomedical Applications.

作者信息

Albahkali Thamer, Abdo Hany S, Salah Omar, Fouly Ahmed

机构信息

Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

The King Salman Center for Disability Research, Riyadh 11421, Saudi Arabia.

出版信息

Polymers (Basel). 2023 Jul 15;15(14):3053. doi: 10.3390/polym15143053.

Abstract

Tribological performance is a critical aspect of materials used in biomedical applications, as it can directly impact the comfort and functionality of devices for individuals with disabilities. Polylactic Acid (PLA) is a widely used 3D-printed material in this field, but its mechanical and tribological properties can be limiting. This study focuses on the development of an artificial intelligence model using ANFIS to predict the wear volume of PLA composites under various conditions. The model was built on data gathered from tribological experiments involving PLA green composites with different weight fractions of date particles. These samples were annealed for different durations to eliminate residual stresses from 3D printing and then subjected to tribological tests under varying normal loads and sliding distances. Mechanical properties and finite element models were also analyzed to better understand the tribological results and evaluate the load-carrying capacity of the PLA composites. The ANFIS model demonstrated excellent compatibility and robustness in predicting wear volume, with an average percentage error of less than 0.01% compared to experimental results. This study highlights the potential of heat-treated PLA green composites for improved tribological performance in biomedical applications.

摘要

摩擦学性能是生物医学应用中所用材料的一个关键方面,因为它会直接影响残疾人士使用设备的舒适度和功能。聚乳酸(PLA)是该领域广泛使用的3D打印材料,但其机械性能和摩擦学性能可能存在局限性。本研究重点在于开发一种使用自适应神经模糊推理系统(ANFIS)的人工智能模型,以预测PLA复合材料在各种条件下的磨损量。该模型基于从摩擦学实验收集的数据构建,这些实验涉及含有不同重量分数枣颗粒的PLA绿色复合材料。对这些样品进行不同时长的退火处理,以消除3D打印产生的残余应力,然后在不同的法向载荷和滑动距离下进行摩擦学测试。还分析了机械性能和有限元模型,以更好地理解摩擦学结果并评估PLA复合材料的承载能力。与实验结果相比,ANFIS模型在预测磨损量方面表现出优异的兼容性和稳健性,平均百分比误差小于0.01%。本研究突出了热处理PLA绿色复合材料在生物医学应用中改善摩擦学性能的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d5/10383854/2227ed82fb66/polymers-15-03053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验