Suppr超能文献

利用最优传输理论优化深度卷积神经网络微观细胞计数方法。

Using optimal transport theory to optimize a deep convolutional neural network microscopic cell counting method.

作者信息

Ding Yuanyuan, Zheng Yuanjie, Han Zeyu, Yang Xinbo

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, Shandong, China.

School of Mathematics and Statistics, Shandong University (Weihai), Weihai, 264209, Shandong, China.

出版信息

Med Biol Eng Comput. 2023 Nov;61(11):2939-2950. doi: 10.1007/s11517-023-02862-7. Epub 2023 Aug 3.

Abstract

Medical image processing has become increasingly important in recent years, particularly in the field of microscopic cell imaging. However, accurately counting the number of cells in an image can be a challenging task due to the significant variations in cell size and shape. To tackle this problem, many existing methods rely on deep learning techniques, such as convolutional neural networks (CNNs), to count cells in an image or use regression counting methods to learn the similarities between an input image and a predicted cell image density map. In this paper, we propose a novel approach to monitor the cell counting process by optimizing the loss function using the optimal transport method, a rigorous measure to calculate the difference between the predicted count map and the dot annotation map generated by the CNN. We evaluated our algorithm on three publicly available cell count benchmarks: the synthetic fluorescence microscopy (VGG) dataset, the modified bone marrow (MBM) dataset, and the human subcutaneous adipose tissue (ADI) dataset. Our method outperforms other state-of-the-art methods, achieving a mean absolute error (MAE) of 2.3, 4.8, and 13.1 on the VGG, MBM, and ADI datasets, respectively, with smaller standard deviations. By using the optimal transport method, our approach provides a more accurate and reliable cell counting method for medical image processing.

摘要

近年来,医学图像处理变得越来越重要,尤其是在微观细胞成像领域。然而,由于细胞大小和形状的显著差异,准确计算图像中的细胞数量可能是一项具有挑战性的任务。为了解决这个问题,许多现有方法依赖于深度学习技术,如卷积神经网络(CNN),来计算图像中的细胞数量,或者使用回归计数方法来学习输入图像与预测的细胞图像密度图之间的相似性。在本文中,我们提出了一种新颖的方法,通过使用最优传输方法优化损失函数来监控细胞计数过程,最优传输方法是一种计算预测计数图与CNN生成的点注释图之间差异的严格度量。我们在三个公开可用的细胞计数基准上评估了我们的算法:合成荧光显微镜(VGG)数据集、改良骨髓(MBM)数据集和人类皮下脂肪组织(ADI)数据集。我们的方法优于其他现有方法,在VGG、MBM和ADI数据集上分别实现了2.3、4.8和13.1的平均绝对误差(MAE),且标准差更小。通过使用最优传输方法,我们的方法为医学图像处理提供了一种更准确、可靠的细胞计数方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验