Suppr超能文献

使用深度神经网络对接受新辅助化疗的食管癌患者进行病理完全缓解的内镜评估——来自四个日本食管癌中心的多中心回顾性研究

Endoscopic Evaluation of Pathological Complete Response Using Deep Neural Network in Esophageal Cancer Patients Who Received Neoadjuvant Chemotherapy-Multicenter Retrospective Study from Four Japanese Esophageal Centers.

作者信息

Matsuda Satoru, Irino Tomoyuki, Okamura Akihiko, Mayanagi Shuhei, Booka Eisuke, Takeuchi Masashi, Kawakubo Hirofumi, Takeuchi Hiroya, Watanabe Masayuki, Kitagawa Yuko

机构信息

Department of Surgery, Keio University School of Medicine, Tokyo, Japan.

Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.

出版信息

Ann Surg Oncol. 2023 Nov;30(12):7472-7480. doi: 10.1245/s10434-023-13862-0. Epub 2023 Aug 5.

Abstract

BACKGROUND

Detecting pathological complete response (pCR) before surgery would facilitate nonsurgical approach after neoadjuvant chemotherapy (NAC). We developed an artificial intelligence (AI)-guided pCR evaluation using a deep neural network to identify pCR before surgery.

METHODS

This study examined resectable esophageal squamous cell carcinoma (ESCC) patients who underwent esophagectomy after NAC. The same number of histological responders without pCR and non-responders were randomly selected based on the number of pCR patients. Endoscopic images were analyzed using a deep neural network. A test dataset consisting of 20 photos was used for validation. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of AI and four experienced endoscopists' pCR evaluations were calculated. For pathological response evaluation, Japanese Classification of Esophageal Cancer was used.

RESULTS

The study enrolled 123 patients, including 41 patients with pCR, the same number of histological responders without pCR, and non-responders [grade 0, 5 (4%); grade 1a, 36 (30%); grade 1b, 21 (17%); grade 2, 20 (16%); grade 3, 41 (33%)]. In 20 models, the median values of sensitivity, specificity, PPV, NPV, and accuracy for endoscopic response (ER) detection were 60%, 81%, 77%, 67%, and 70%, respectively. Similarly, the endoscopists' median of these was 43%, 90%, 85%, 65%, and 66%, respectively.

CONCLUSIONS

This proof-of-concept study demonstrated that the AI-guided endoscopic response evaluation after NAC could identify pCR with moderate accuracy. The current AI algorithm might guide an individualized treatment strategy including nonsurgical approach in ESCC patients through prospective studies with careful external validation to demonstrate the clinical value of this diagnostic approach including primary tumor and lymph node.

摘要

背景

术前检测病理完全缓解(pCR)将有助于新辅助化疗(NAC)后采取非手术治疗方法。我们开发了一种使用深度神经网络的人工智能(AI)引导的pCR评估方法,以在术前识别pCR。

方法

本研究检查了接受NAC后行食管切除术的可切除食管鳞状细胞癌(ESCC)患者。根据pCR患者的数量,随机选择相同数量的无pCR的组织学缓解者和无反应者。使用深度神经网络分析内镜图像。由20张照片组成的测试数据集用于验证。计算AI和四位经验丰富的内镜医师的pCR评估的敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。对于病理反应评估,采用日本食管癌分类法。

结果

该研究共纳入123例患者,包括41例pCR患者、相同数量的无pCR的组织学缓解者和无反应者[0级,5例(4%);1a级,36例(30%);1b级,21例(17%);2级,20例(16%);3级,41例(33%)]。在20个模型中,内镜反应(ER)检测的敏感性、特异性、PPV、NPV和准确性的中位数分别为60%、81%、77%、67%和70%。同样,内镜医师的这些指标的中位数分别为43%、90%、85%、65%和66%。

结论

这项概念验证研究表明,NAC后AI引导的内镜反应评估能够以中等准确性识别pCR。当前的AI算法可能通过进行仔细外部验证的前瞻性研究,指导包括ESCC患者非手术治疗方法在内的个体化治疗策略,以证明这种包括原发肿瘤和淋巴结的诊断方法的临床价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验