Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, FL, USA.
Department of Clinical and Health Psychology, University of Florida College of Public Health & Health Professions, Gainesville, FL, USA.
J Alzheimers Dis. 2023;95(2):535-548. doi: 10.3233/JAD-230208.
Assessing the risk of developing clinical Alzheimer's disease (AD) dementia, by machine learning survival analysis approaches, among participants registered in Alzheimer's Disease Centers is important for AD dementia management.
To construct a prediction model for the onset time of clinical AD dementia using the National Alzheimer Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) registered cohorts.
A model was constructed using the Random Survival Forest (RSF) approach and internally and externally validated on the NACC cohort and the ADNI cohort. An R package and a Shiny app were provided for accessing the model.
We built a predictive model having the six predictors: delayed logical memory score (story recall), CDR® Dementia Staging Instrument - Sum of Boxes, general orientation in CDR®, ability to remember dates and ability to pay bills in the Functional Activities Questionnaire, and patient age. The C indices of the model were 90.82% (SE = 0.71%) and 86.51% (SE = 0.75%) in NACC and ADNI respectively. The time-dependent AUC and accuracy at 48 months were 92.48% (SE = 1.12%) and 88.66% (SE = 1.00%) respectively in NACC, and 90.16% (SE = 1.12%) and 85.00% (SE = 1.14%) respectively in ADNI.
The model showed good prediction performance and the six predictors were easy to obtain, cost-effective, and non-invasive. The model could be used to inform clinicians and patients on the probability of developing clinical AD dementia in 4 years with high accuracy.
使用机器学习生存分析方法,评估在阿尔茨海默病中心登记的参与者发生临床阿尔茨海默病(AD)痴呆的风险,对于 AD 痴呆的管理很重要。
使用国家阿尔茨海默病协调中心(NACC)和阿尔茨海默病神经影像学倡议(ADNI)登记队列构建预测临床 AD 痴呆发病时间的模型。
使用随机生存森林(RSF)方法构建模型,并在 NACC 队列和 ADNI 队列中进行内部和外部验证。提供了一个 R 包和一个 Shiny 应用程序,用于访问该模型。
我们构建了一个预测模型,具有六个预测因子:延迟逻辑记忆评分(故事回忆)、CDR®痴呆分期仪器-总和、CDR 中的一般定向、记住日期的能力和在功能活动问卷中支付账单的能力,以及患者年龄。该模型在 NACC 和 ADNI 中的 C 指数分别为 90.82%(SE=0.71%)和 86.51%(SE=0.75%)。在 NACC 中,48 个月时的时间依赖性 AUC 和准确性分别为 92.48%(SE=1.12%)和 88.66%(SE=1.00%),在 ADNI 中分别为 90.16%(SE=1.12%)和 85.00%(SE=1.14%)。
该模型表现出良好的预测性能,且六个预测因子易于获取,具有成本效益,且非侵入性。该模型可用于以高精度告知临床医生和患者在 4 年内发生临床 AD 痴呆的概率。