Wittmer J P, Semenov A N, Baschnagel J
Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
Soft Matter. 2023 Aug 16;19(32):6140-6156. doi: 10.1039/d3sm00424d.
Strain correlation functions in two-dimensional isotropic elastic bodies are shown both theoretically (using the general structure of isotropic tensor fields) and numerically (using a glass-forming model system) to depend on the coordinates of the field variable (position vector in real space or wavevector in reciprocal space) and thus on the direction of the field vector and the orientation of the coordinate system. Since the fluctuations of the longitudinal and transverse components of the strain field in reciprocal space are known in the long-wavelength limit from the equipartition theorem, all components of the correlation function tensor field are imposed and no additional physical assumptions are needed. An observed dependence on the field vector direction thus cannot be used as an indication for anisotropy or for a plastic rearrangement. This dependence is different for the associated strain response field containing also information on the localized stress perturbation.
二维各向同性弹性体中的应变相关函数在理论上(使用各向同性张量场的一般结构)和数值上(使用玻璃形成模型系统)均显示取决于场变量的坐标(实空间中的位置矢量或倒易空间中的波矢),从而取决于场矢量的方向和坐标系的取向。由于根据均分定理,在长波长极限下倒易空间中应变场纵向和横向分量的涨落是已知的,所以相关函数张量场的所有分量都是确定的,无需额外的物理假设。因此,观察到的对应变场矢量方向的依赖性不能用作各向异性或塑性重排的指示。对于还包含局部应力扰动信息的相关应变响应场,这种依赖性是不同的。