Krüssel Sarah, Deb Ishana, Son Seungkyu, Ewall Gabrielle, Chang Minhyeok, Lee Hey-Kyoung, do Heo Won, Kwon Hyung-Bae
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
bioRxiv. 2023 Jul 25:2023.07.21.550095. doi: 10.1101/2023.07.21.550095.
Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine number may not be universally applied to all neuronal types. Here we found that the ectopic expression of H-Ras increased dendritic spine numbers regardless of cortical cell types such as layer 2/3 pyramidal neurons (PyNs), parvalbumin (PV)- and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex (M1). The probability of detecting dendritic spines was positively correlated with the magnitude of H-Ras activity, suggesting elevated local H-Ras activity is involved in the process of dendritic spine formation. H-Ras overexpression caused high spine turnover rate via adding more spines rather than eliminating them. Two-photon photolysis of glutamate triggered dendritic spine formation in mature neurons, suggesting H-Ras induced spine formation is not restricted to the early development. In PyNs and PV-INs, but not VIP-INs, we observed a shift in average spine neck length towards longer filopodia-like phenotypes. The portion of dendritic spines lacking key excitatory synaptic proteins were significantly increased in H-Ras transfected neurons, suggesting that these increased spines have other distinct functions. High spine density caused by H-Ras did not result in change in the frequency or the amplitude of miniature excitatory postsynaptic currents (mEPSCs). Thus, our results propose that dendritic spines possess more multifaceted functions beyond the morphological proxy of excitatory synapse.
树突棘是维持稳定突触通讯的兴奋性突触的结构相关物。然而,这种强大的棘突 - 突触关系主要在兴奋性锥体神经元(PyNs)中得到表征,这就提出了一种可能性,即从树突棘数量推断突触密度可能并不普遍适用于所有神经元类型。在这里,我们发现H-Ras的异位表达增加了树突棘的数量,无论其在初级运动皮层(M1)中的皮质细胞类型如何,如第2/3层锥体神经元(PyNs)、小白蛋白(PV)和血管活性肠肽(VIP)阳性中间神经元(INs)。检测到树突棘的概率与H-Ras活性的大小呈正相关,这表明局部H-Ras活性升高参与了树突棘形成过程。H-Ras过表达通过增加更多的棘突而不是消除它们导致了高棘突周转率。谷氨酸的双光子光解在成熟神经元中触发了树突棘形成,这表明H-Ras诱导的棘突形成不限于早期发育。在PyNs和PV-INs中,但在VIP-INs中未观察到,我们观察到平均棘突颈部长度向更长的丝状伪足样表型转变。在H-Ras转染的神经元中,缺乏关键兴奋性突触蛋白的树突棘部分显著增加,这表明这些增加的棘突具有其他不同的功能。由H-Ras引起的高棘突密度并未导致微小兴奋性突触后电流(mEPSCs)的频率或幅度发生变化。因此,我们的结果表明,树突棘除了作为兴奋性突触的形态学指标外,还具有更多方面的功能。