Suppr超能文献

Adversarial Data Augmentation for HMM-Based Anomaly Detection.

作者信息

Castellini Alberto, Masillo Francesco, Azzalini Davide, Amigoni Francesco, Farinelli Alessandro

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14131-14143. doi: 10.1109/TPAMI.2023.3303099. Epub 2023 Nov 3.

Abstract

In this work, we concentrate on the detection of anomalous behaviors in systems operating in the physical world and for which it is usually not possible to have a complete set of all possible anomalies in advance. We present a data augmentation and retraining approach based on adversarial learning for improving anomaly detection. In particular, we first define a method for generating adversarial examples for anomaly detectors based on Hidden Markov Models (HMMs). Then, we present a data augmentation and retraining technique that uses these adversarial examples to improve anomaly detection performance. Finally, we evaluate our adversarial data augmentation and retraining approach on four datasets showing that it achieves a statistically significant performance improvement and enhances the robustness to adversarial attacks. Key differences from the state-of-the-art on adversarial data augmentation are the focus on multivariate time series (as opposed to images), the context of one-class classification (in contrast to standard multi-class classification), and the use of HMMs (in contrast to neural networks).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验