Domenianni Luis I, Bauer Markus, Schmidt-Räntsch Till, Lindner Jörg, Schneider Sven, Vöhringer Peter
Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115, Bonn, Germany.
Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077, Göttingen, Germany.
Angew Chem Int Ed Engl. 2023 Oct 16;62(42):e202309618. doi: 10.1002/anie.202309618. Epub 2023 Sep 6.
Transition-metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen-atom-transfer reactivity. They are typically prepared in situ upon optically induced N elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of the primary photo-induced processes and the structural/electronic factors mediating the N loss with birth of the terminal metal-nitrogen core. Using femtosecond infrared spectroscopy, we elucidate here the primary molecular-level mechanisms responsible for the formation of a unique platinum(II) nitrene with a triplet ground state from a closed-shell platinum(II) azide precursor. The spectroscopic data in combination with quantum-chemical calculations provide compelling evidence that product formation requires the initial occupation of a singlet excited state with an anionic azide diradical ligand that is bound to a low-spin d -configured Pt ion. Subsequent intersystem crossing generates the Pt-bound triplet azide diradical, which smoothly evolves into the triplet nitrene via N loss in a near barrierless adiabatic dissociation. Our data highlight the importance of the productive, N -releasing state possessing azide ππ* character as a design principle for accessing efficient N-atom-transfer catalysts.
过渡金属氮化物/氮烯是用于催化氮原子转移反应的极具前景的试剂。它们通常在光诱导下从叠氮基前体中消除氮时原位制备。然而,要充分发挥其催化潜力,需要深入了解初级光诱导过程以及介导末端金属氮核心形成时氮损失的结构/电子因素。利用飞秒红外光谱,我们在此阐明了从闭壳层铂(II)叠氮化物前体形成具有三重基态的独特铂(II)氮烯的主要分子水平机制。光谱数据与量子化学计算相结合提供了令人信服的证据,表明产物形成需要最初占据单重激发态,该激发态具有与低自旋d构型铂离子结合的阴离子叠氮双自由基配体。随后的系间窜越产生与铂结合的三重态叠氮双自由基,其通过在近乎无势垒的绝热解离中损失氮而平稳地演变成三重态氮烯。我们的数据突出了具有叠氮ππ*特征的产生氮的有效状态作为获得高效氮原子转移催化剂的设计原则的重要性。