Ning Meng, Wen Jiajun, Duan Zhihua, Cao Xiao Guo, Chen Jieqi, Chen Jingxun, Yang Qian, Ye Xiaoji, Li Zhenghui, Zhang Haiyan
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China.
ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39351-39362. doi: 10.1021/acsami.3c07504. Epub 2023 Aug 8.
Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C-S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g), a high ICE (>90%), superior cycling stability (490 mAh g after 1100 cycles at 5 A g), and outstanding rate performance (420 mAh g at a high current density of 50 A g). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.
硫(S)掺杂是构建用于钠离子电池的高性能碳负极的有效方法。然而,传统的硫掺杂碳设计通常表现出低初始库仑效率(ICE)、较差的倍率性能和不良的循环性能,限制了它们的实际应用。本研究提出了一种创新的设计策略,通过高能球磨以磺化糖分子为前驱体制备硫掺杂碳。结果表明,高能球磨可以通过调节硫原子的化学状态将硫固定在磺化糖分子上,从而创建一个掺杂水平为15.5 wt%的富硫碳骨架。此外,硫原子主要以C-S键的形式存在,有利于稳定的电化学反应;同时,硫原子扩大了碳层间距并提供了足够的电容型钠存储位点。因此,硫掺杂碳表现出大容量(>600 mAh g)、高ICE(>90%)、优异的循环稳定性(在5 A g下1100次循环后为490 mAh g)和出色的倍率性能(在50 A g的高电流密度下为420 mAh g)。硫掺杂碳如此优异的钠存储性能此前在文献中鲜有报道。