Suppr超能文献

一种基于机器学习的纳米光催化剂模块,用于加速具有增强光催化活性的BiWO/MIL-53(Al)纳米复合材料的设计。

A machine learning-based nano-photocatalyst module for accelerating the design of BiWO/MIL-53(Al) nanocomposites with enhanced photocatalytic activity.

作者信息

Zhai Xiuyun, Chen Mingtong

机构信息

College of Intelligent Manufacturing, Hunan University of Science and Engineering Yongzhou 425100 Hunan China

Public Experimental Teaching Center, Panzhihua University Panzhihua 617000 Sichuan China.

出版信息

Nanoscale Adv. 2023 Jun 6;5(16):4065-4073. doi: 10.1039/d3na00122a. eCollection 2023 Aug 8.

Abstract

It is a great challenge to acquire novel BiWO/MIL-53(Al) (BWO/MIL) nanocomposites with excellent catalytic activity by the trial-and-error method in the vast untapped synthetic space. The degradation rate of Rhodamine B dye (DR) can be used as the main parameter to evaluate the catalytic activity of BWO/MIL nanocomposites. In this work, a machine learning-based nano-photocatalyst module was developed to speed up the design of BWO/MIL with desirable performance. Firstly, the DR dataset was constructed, and four key features related to the synthetic conditions of BWO/MIL were filtered by the forward feature selection method based on support vector regression (SVR). Secondly, the SVR model with radical basis function for predicting the DR of BWO/MIL was established with the key features and optimal hyperparameters. The correlation coefficients () between predicted and experimental DR were 0.823 and 0.884 for leave-one-out cross-validation (LOOCV) and the external test, respectively. Thirdly, potential BWO/MIL nanocomposites with higher DR were discovered by inverse projection, the prediction model, and virtual screening from the synthesis space. Meanwhile, an online web service (http://1.14.49.110/online_predict/BWO2) was built to share the model for predicting the DR of BWO/MIL. Moreover, sensitivity analysis was brought into boosting the model's explainability and illustrating how the DR of BWO/MIL changes over the four key features, respectively. The method mentioned here can provide valuable clues to develop new nanocomposites with the desired properties and accelerate the design of nano-photocatalysts.

摘要

在广阔的未开发合成空间中,通过反复试验的方法获得具有优异催化活性的新型BiWO/MIL-53(Al)(BWO/MIL)纳米复合材料是一项巨大的挑战。罗丹明B染料(DR)的降解率可作为评估BWO/MIL纳米复合材料催化活性的主要参数。在这项工作中,开发了一种基于机器学习的纳米光催化剂模块,以加速具有理想性能的BWO/MIL的设计。首先,构建了DR数据集,并基于支持向量回归(SVR)的前向特征选择方法筛选了与BWO/MIL合成条件相关的四个关键特征。其次,利用关键特征和最优超参数建立了具有径向基函数的SVR模型,用于预测BWO/MIL的DR。留一法交叉验证(LOOCV)和外部测试中预测的DR与实验DR之间的相关系数()分别为0.823和0.884。第三,通过反向投影、预测模型和从合成空间的虚拟筛选,发现了具有更高DR的潜在BWO/MIL纳米复合材料。同时,建立了一个在线网络服务(http://1.14.49.110/online_predict/BWO2)来共享预测BWO/MIL的DR的模型。此外,引入敏感性分析以提高模型的可解释性,并分别说明BWO/MIL的DR如何随四个关键特征变化。这里提到的方法可以为开发具有所需性能的新型纳米复合材料提供有价值的线索,并加速纳米光催化剂的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1baf/10408574/acaa7f518d5c/d3na00122a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验