Suppr超能文献

基于 DNA 编码的核苷酸模式和深度特征进行基于实例和基于类的图像检索。

DNA Encoding-Based Nucleotide Pattern and Deep Features for Instance and Class-Based Image Retrieval.

出版信息

IEEE Trans Nanobioscience. 2024 Jan;23(1):190-201. doi: 10.1109/TNB.2023.3303512. Epub 2024 Jan 3.

Abstract

Recently, DNA encoding has shown its potential to store the vital information of the image in the form of nucleotides, namely A, C, T , and G , with the entire sequence following run-length and GC-constraint. As a result, the encoded DNA planes contain unique nucleotide strings, giving more salient image information using less storage. In this paper, the advantages of DNA encoding have been inherited to uplift the retrieval accuracy of the content-based image retrieval (CBIR) system. Initially, the most significant bit-plane-based DNA encoding scheme has been suggested to generate DNA planes from a given image. The generated DNA planes of the image efficiently capture the salient visual information in a compact form. Subsequently, the encoded DNA planes have been utilized for nucleotide patterns-based feature extraction and image retrieval. Simultaneously, the translated and amplified encoded DNA planes have also been deployed on different deep learning architectures like ResNet-50, VGG-16, VGG-19, and Inception V3 to perform classification-based image retrieval. The performance of the proposed system has been evaluated using two corals, an object, and a medical image dataset. All these datasets contain 28,200 images belonging to 134 different classes. The experimental results confirm that the proposed scheme achieves perceptible improvements compared with other state-of-the-art methods.

摘要

最近,DNA 编码技术已经显示出了以核苷酸(即 A、C、T 和 G)的形式存储图像重要信息的潜力,整个序列遵循游程长度和 GC 约束。因此,编码的 DNA 平面包含独特的核苷酸字符串,使用更少的存储就能提供更显著的图像信息。在本文中,我们继承了 DNA 编码的优势,以提高基于内容的图像检索(CBIR)系统的检索准确性。首先,我们提出了一种基于最重要位平面的 DNA 编码方案,从给定的图像生成 DNA 平面。生成的图像 DNA 平面以紧凑的形式有效地捕获显著的视觉信息。然后,我们利用编码的 DNA 平面进行基于核苷酸模式的特征提取和图像检索。同时,我们还将翻译和放大的编码 DNA 平面部署到不同的深度学习架构,如 ResNet-50、VGG-16、VGG-19 和 Inception V3,以执行基于分类的图像检索。我们使用两个珊瑚、一个物体和一个医学图像数据集来评估所提出系统的性能。所有这些数据集都包含 28200 张属于 134 个不同类别的图像。实验结果证实,与其他最先进的方法相比,所提出的方案实现了显著的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验