Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
Dev Biol. 2023 Nov;503:25-42. doi: 10.1016/j.ydbio.2023.08.002. Epub 2023 Aug 10.
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25 embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25 embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25 mouse embryos.
颅面发育是由转录因子驱动的调控网络、表观遗传修饰和信号通路协调的。信号分子及其受体依赖于内体-溶酶体运输来防止在质膜上积累。内体分选复合物必需运输(ESCRT)机制被招募到内体膜上,从而使这种内体货物降解。在体外和无脊椎动物模型中的研究确立了 ESCRT 机制在膜重塑、内体运输和激活的膜受体的溶酶体降解中的作用。然而,在脊椎动物发育过程中的研究却很少。通过ENU 诱导的诱变,我们分离到了一个携带 ESCRT-II 成分 Vps25 功能缺失等位基因的小鼠品系 Vps25,其颅面异常类似于人类先天性综合征的特征。在这里,我们评估了 ESCRT 编码基因在小鼠发育过程中的时空动态。我们表明,这些基因虽然在颅面复合体、心脏和四肢的离散区域富集,但广泛表达。ESCRT 编码基因,包括 Vps25,在颅神经嵴衍生的间充质和上皮中均有表达。与组成型 ESCRT 突变体不同,Vps25 胚胎表现出晚期致死性。它们表现出下颌骨发育不良、短鼻、耳郭畸形和腭裂。因此,我们首次提供了 ESCRT-II 在颅面形态发生中的关键作用的证据,并报告了 Vps25 胚胎中 NOTCH 信号的紊乱。鉴于 NOTCH 信号在发育中的颅部的已知作用,特别是在下颌骨中,我们提出 NOTCH 途径部分介导了 Vps25 小鼠胚胎的颅面缺陷。