Xu Jie, Yin Rui, Huang Yu, Gao Hannah, Wu Yonghui, Guo Jingchuan, Smith Glenn E, DeKosky Steven T, Wang Fei, Guo Yi, Bian Jiang
medRxiv. 2023 Aug 4:2023.07.27.23293270. doi: 10.1101/2023.07.27.23293270.
Alzheimer's disease (AD) is a complex heterogeneous neurodegenerative disease that requires an in-depth understanding of its progression pathways and contributing factors to develop effective risk stratification and prevention strategies. In this study, we proposed an outcome-oriented model to identify progression pathways from mild cognitive impairment (MCI) to AD using electronic health records (EHRs) from the OneFlorida+ Clinical Research Consortium. To achieve this, we employed the long short-term memory (LSTM) network to extract relevant information from the sequential records of each patient. The hierarchical agglomerative clustering was then applied to the learned representation to group patients based on their progression subtypes. Our approach identified multiple progression pathways, each of which represented distinct patterns of disease progression from MCI to AD. These pathways can serve as a valuable resource for researchers to understand the factors influencing AD progression and to develop personalized interventions to delay or prevent the onset of the disease.
阿尔茨海默病(AD)是一种复杂的异质性神经退行性疾病,需要深入了解其进展途径和促成因素,以制定有效的风险分层和预防策略。在本研究中,我们提出了一种以结果为导向的模型,使用来自OneFlorida+临床研究联盟的电子健康记录(EHR)来识别从轻度认知障碍(MCI)到AD的进展途径。为了实现这一目标,我们采用长短期记忆(LSTM)网络从每个患者的序列记录中提取相关信息。然后将层次凝聚聚类应用于学习到的表示,根据患者的进展亚型对其进行分组。我们的方法确定了多种进展途径,每种途径都代表了从MCI到AD的不同疾病进展模式。这些途径可以为研究人员提供宝贵资源,以了解影响AD进展的因素,并制定个性化干预措施来延迟或预防疾病的发作。