Zhao Xiaoxue, Li Zhuchun, Xue Xiaoping
School of Mathematics, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
Phys Rev E. 2023 Jul;108(1-1):014305. doi: 10.1103/PhysRevE.108.014305.
Given a set of standard binary patterns and a defective pattern, the binary pattern retrieval task is to find the closest pattern to the defective one among these standard patterns. The associative-memory network of Kuramoto oscillators consisting of a Hebbian coupling term and a second-order Fourier term can be applied to this task. When the memorized patterns stored in the Hebbian coupling are mutually orthogonal, recent studies show that the network is capable of distinguishing the memorized patterns from most other patterns. However, the orthogonality usually fails in real situations. In this paper, we present a unified approach for the application of this model in pattern retrieval problems with any general set of standard patterns. By subgrouping the standard patterns and employing an orthogonal lift of each subgroup, this approach makes use of the theory in the case of mutually orthogonal memorized patterns. In particular, the error-free retrieval can be guaranteed, which requires that the retrieved pattern must coincide with one of the standard patterns. As illustrative simulations, pattern retrieval tests for partly sheltered Arabic number symbols are presented.
给定一组标准二进制模式和一个有缺陷的模式,二进制模式检索任务就是在这些标准模式中找到与有缺陷模式最接近的模式。由一个赫布耦合项和一个二阶傅里叶项组成的仓本振荡器联想记忆网络可应用于此任务。当存储在赫布耦合中的记忆模式相互正交时,最近的研究表明该网络能够将记忆模式与大多数其他模式区分开来。然而,在实际情况中正交性通常会失效。在本文中,我们提出了一种统一方法,用于将该模型应用于具有任何一般标准模式集的模式检索问题。通过对标准模式进行分组并对每个子组采用正交提升,此方法利用了记忆模式相互正交情况下的理论。特别地,可以保证无错误检索,这要求检索到的模式必须与标准模式之一一致。作为说明性模拟,给出了部分遮挡阿拉伯数字符号的模式检索测试。