Department of Energy Conversion and Storage, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231, Gdansk, Poland.
Environ Sci Pollut Res Int. 2023 Sep;30(43):96977-96992. doi: 10.1007/s11356-023-28824-y. Epub 2023 Aug 16.
Waste biomass, a renewable energy source, is inexpensive material that has great potential in sorption and electrochemical application. The selected waste materials (corncobs, coconut shells, walnuts, and pistachio husks) allow to close the production cycle and enable material recycling, which are important aspects in the hierarchy of waste management. The proposed methodology for production and activation of biochars can be used industrially due to highly porous structure, developed surface area, and sorption ability of the obtained activated carbons (AC). A significant increase (from 4 up to more than 10 times) in specific surface area (SSA) is observed for all samples after the CO activation process (0.5 h at 800 °C) up to 725 m g for corncobs, 534.9 m g for pistachio husks, 523 m g for coconut shells, and 393 m g for walnut husks. The highest value of SSA is achieved for the AC derived from corncobs. This material is evaluated for use as an adsorbent, revealing 99% removal of Rhodamine B (dye/AC ratio of 0.0017) and 69% removal of chromium (dye/AC ratio of 0.0028). Based on the adsorption kinetics analysis, it is demonstrated that the Cr(VI) undergoes physical adsorption, while RhB undergoes chemisorption. In addition, corncob-derived AC exhibits superior electrochemical performance in 6 M KOH compared to the nonactivated biochar. A specific capacitance of 70 F g at 5 A g is achieved, along with outstanding rate capability (45 F g at 50 A g) and cycling stability (94% at 10 A g after 10,000 cycles). In contrast, the nonactivated sample shows only 34 F g at 5 A g and 13 F g at 50 A g, with a stability of 91.4%.
废弃生物质是一种可再生能源,是一种廉价的材料,在吸附和电化学应用方面具有巨大的潜力。所选的废料(玉米芯、椰子壳、核桃和开心果壳)可以封闭生产周期并实现材料回收,这是废物管理层次结构中的重要方面。所提出的生物炭生产和活化方法由于具有高度多孔的结构、发达的表面积和所获得的活性炭(AC)的吸附能力,可以在工业上使用。在 CO 活化过程(800°C 下 0.5 小时)后,所有样品的比表面积(SSA)均显著增加(从 4 倍增加到 10 倍以上),玉米芯的 SSA 增加到 725 m g,开心果壳的 SSA 增加到 534.9 m g,椰子壳的 SSA 增加到 523 m g,核桃壳的 SSA 增加到 393 m g。玉米芯衍生的 AC 的 SSA 值最高。该材料被评估为用作吸附剂,显示出 Rhodamine B 的 99%去除率(染料/AC 比为 0.0017)和铬的 69%去除率(染料/AC 比为 0.0028)。基于吸附动力学分析,表明 Cr(VI) 经历物理吸附,而 RhB 经历化学吸附。此外,与非活化生物炭相比,玉米芯衍生的 AC 在 6 M KOH 中表现出优异的电化学性能。在 5 A g 时达到 70 F g 的比电容,具有出色的倍率性能(在 50 A g 时为 45 F g)和循环稳定性(在 10 A g 时经过 10000 次循环后为 94%)。相比之下,非活化样品在 5 A g 时仅为 34 F g,在 50 A g 时为 13 F g,稳定性为 91.4%。