University of Florida Genetics Institute, Gainesville, Florida (T.P.B., I.C.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (I.M.S.d.V., U.S.W., A.C., J.K.W., N.S., J.Z.); Pfizer, San Diego, California (C.A.F.); Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (L.A.C., K.S.K.); Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (L.A.C.); Duke Human Vaccine Institute, Durham, North Carolina (D.W.C.); Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (A.N.H.); The California Institute of Regenerative Medicine, South San Francisco, California (P.W.); Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.G.); National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina (A.M.J.); Department of Molecular and Cellular Pharmacology, Baylor College of Medicine, Houston, Texas (D.P.E., S.L.G., S.H.); Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota (C.A.L.); Department of Pathology, University of Colorado, Aurora, Colorado (J.K.R., C.A.S.); Neuroscience Program, Wellesley College, Wellesley, Massachusetts (M.T.); Center for Clinical Pharmacology, University of Health Sciences and Pharmacy, Saint Louis, Missouri (C.B., B.E., L.H.); Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama (K.G.); Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida (N.P., K.L.B.); Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (T.S.H.); Asteroid Therapeutics, Inc. Indianapolis, Indiana (S.S., K.R.S., A.C.); Saint Louis University School of Medicine, St. Louis, Missouri (M.H.M.); Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (B.N.F.); and Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina (J.A.C.)
University of Florida Genetics Institute, Gainesville, Florida (T.P.B., I.C.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (I.M.S.d.V., U.S.W., A.C., J.K.W., N.S., J.Z.); Pfizer, San Diego, California (C.A.F.); Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (L.A.C., K.S.K.); Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (L.A.C.); Duke Human Vaccine Institute, Durham, North Carolina (D.W.C.); Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (A.N.H.); The California Institute of Regenerative Medicine, South San Francisco, California (P.W.); Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.G.); National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina (A.M.J.); Department of Molecular and Cellular Pharmacology, Baylor College of Medicine, Houston, Texas (D.P.E., S.L.G., S.H.); Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota (C.A.L.); Department of Pathology, University of Colorado, Aurora, Colorado (J.K.R., C.A.S.); Neuroscience Program, Wellesley College, Wellesley, Massachusetts (M.T.); Center for Clinical Pharmacology, University of Health Sciences and Pharmacy, Saint Louis, Missouri (C.B., B.E., L.H.); Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama (K.G.); Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida (N.P., K.L.B.); Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (T.S.H.); Asteroid Therapeutics, Inc. Indianapolis, Indiana (S.S., K.R.S., A.C.); Saint Louis University School of Medicine, St. Louis, Missouri (M.H.M.); Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (B.N.F.); and Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina (J.A.C.).
Pharmacol Rev. 2023 Nov;75(6):1233-1318. doi: 10.1124/pharmrev.121.000436. Epub 2023 Aug 16.
The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.
NR 超家族包括人类中的 48 种转录因子,它们控制着涉及广泛生理过程的众多基因网络程序。这篇综述将总结和讨论从整合各种方法中获得的 NR 生物学和药物开发的最新进展,包括生物物理技术、结构研究和转化研究。我们还强调了 NR 信号的缺陷如何导致各种疾病和障碍,以及如何通过与合成亲脂性配体结合来调节 NR 信号来靶向治疗干预。此外,我们还回顾了最近的研究,这些研究增进了我们对 NR 结构和信号的理解。意义陈述:核受体 (NR) 是配体调节的转录因子,是众多生理过程的关键调节剂。NR 是一系列药物的受体,在这篇综述中,我们提供了对这些药物靶点作用的最新研究的更新。
Protein Sci. 2018-11
Vitam Horm. 2004
Curr Top Med Chem. 2003
Adv Protein Chem Struct Biol. 2025
Prog Mol Biol Transl Sci. 2023
Mol Cell Endocrinol. 2010-7-6
Physiol Rev. 2013-4
Eur J Med Chem. 2023-12-5
Dev Genes Evol. 2008-12
Drug Des Devel Ther. 2025-8-22
Nutrients. 2025-8-21
Transcription. 2025
Int J Mol Sci. 2025-4-25
Cancers (Basel). 2025-1-17
Proc Natl Acad Sci U S A. 2022-12-13
Front Cardiovasc Med. 2022-11-7
Nat Commun. 2022-11-21
Acta Pharm Sin B. 2022-3