文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用SCTK2灵活工作流程对单细胞数据进行交互式分析。

Interactive analysis of single-cell data using flexible workflows with SCTK2.

作者信息

Wang Yichen, Sarfraz Irzam, Pervaiz Nida, Hong Rui, Koga Yusuke, Akavoor Vidya, Cao Xinyun, Alabdullatif Salam, Zaib Syed Ali, Wang Zhe, Jansen Frederick, Yajima Masanao, Johnson W Evan, Campbell Joshua D

机构信息

Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.

Bioinformatics Program, Boston University, Boston, MA, USA.

出版信息

Patterns (N Y). 2023 Aug 3;4(8):100814. doi: 10.1016/j.patter.2023.100814. eCollection 2023 Aug 11.


DOI:10.1016/j.patter.2023.100814
PMID:37602214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10436054/
Abstract

Analysis of single-cell RNA sequencing (scRNA-seq) data can reveal novel insights into the heterogeneity of complex biological systems. Many tools and workflows have been developed to perform different types of analyses. However, these tools are spread across different packages or programming environments, rely on different underlying data structures, and can only be utilized by people with knowledge of programming languages. In the Single-Cell Toolkit 2 (SCTK2), we have integrated a variety of popular tools and workflows to perform various aspects of scRNA-seq analysis. All tools and workflows can be run in the R console or using an intuitive graphical user interface built with R/Shiny. HTML reports generated with Rmarkdown can be used to document and recapitulate individual steps or entire analysis workflows. We show that the toolkit offers more features when compared with existing tools and allows for a seamless analysis of scRNA-seq data for non-computational users.

摘要

单细胞RNA测序(scRNA-seq)数据的分析能够揭示复杂生物系统异质性的全新见解。人们已经开发了许多工具和工作流程来进行不同类型的分析。然而,这些工具分散在不同的软件包或编程环境中,依赖不同的底层数据结构,并且只有具备编程语言知识的人才能使用。在单细胞工具包2(SCTK2)中,我们整合了各种流行的工具和工作流程,以执行scRNA-seq分析的各个方面。所有工具和工作流程都可以在R控制台中运行,或使用基于R/Shiny构建的直观图形用户界面运行。使用Rmarkdown生成的HTML报告可用于记录和概括各个步骤或整个分析工作流程。我们表明,与现有工具相比,该工具包具有更多功能,并且允许非计算专业用户无缝分析scRNA-seq数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/61e273dad0ec/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/0ab0d789a0fa/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/6caa27271ea8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/f1d5310e8d35/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/62437bb2014a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/18bfd5238fe9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/61e273dad0ec/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/0ab0d789a0fa/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/6caa27271ea8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/f1d5310e8d35/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/62437bb2014a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/18bfd5238fe9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1a/10436054/61e273dad0ec/gr5.jpg

相似文献

[1]
Interactive analysis of single-cell data using flexible workflows with SCTK2.

Patterns (N Y). 2023-8-3

[2]
Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data.

Nat Commun. 2022-3-30

[3]
iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform.

BMC Genomics. 2019-3-6

[4]
ascend: R package for analysis of single-cell RNA-seq data.

Gigascience. 2019-8-1

[5]
Workflows for microarray data processing in the Kepler environment.

BMC Bioinformatics. 2012-5-17

[6]
DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics.

Int J Mol Sci. 2021-1-30

[7]
Development of interactive biological web applications with R/Shiny.

Brief Bioinform. 2022-1-17

[8]
SCHNAPPs - Single Cell sHiNy APPlication(s).

J Immunol Methods. 2021-12

[9]
GranatumX: A Community-engaging, Modularized, and Flexible Webtool for Single-cell Data Analysis.

Genomics Proteomics Bioinformatics. 2021-6

[10]
RNASeqR: An R Package for Automated Two-Group RNA-Seq Analysis Workflow.

IEEE/ACM Trans Comput Biol Bioinform. 2021

引用本文的文献

[1]
CytoAnalyst web platform facilitates comprehensive single cell RNA sequencing analysis.

Sci Rep. 2025-8-6

[2]
Informatics at the Frontier of Cancer Research.

Cancer Res. 2025-8-15

[3]
Comprehensive analysis of multi-omics single-cell data using the single-cell analyst.

Imeta. 2025-4-28

[4]
A specialized population of monocyte-derived tracheal macrophages promote airway epithelial regeneration through a CCR2-dependent mechanism.

iScience. 2024-6-4

[5]
Ursa: A Comprehensive Multiomics Toolbox for High-Throughput Single-Cell Analysis.

Mol Biol Evol. 2023-12-1

本文引用的文献

[1]
Celda: a Bayesian model to perform co-clustering of genes into modules and cells into subpopulations using single-cell RNA-seq data.

NAR Genom Bioinform. 2022-9-13

[2]
Doublet identification in single-cell sequencing data using .

F1000Res. 2021

[3]
Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data.

Nat Commun. 2022-3-30

[4]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[5]
Modular, efficient and constant-memory single-cell RNA-seq preprocessing.

Nat Biotechnol. 2021-7

[6]
ExperimentSubset: an R package to manage subsets of Bioconductor Experiment objects.

Bioinformatics. 2021-9-29

[7]
BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis.

PeerJ. 2020-12-22

[8]
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.

Gigascience. 2020-12-26

[9]
Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq.

Nat Methods. 2020-7-27

[10]
A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification.

Bioinformatics. 2020-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索